ON CONJUGATELY SIMILAR TRANSFORMATIONS

By

Takashi ITŌ

Introduction. H. Nakano in this book [1] defined the *modulared* semi-ordered linear space R(m), that is, R is a universally continuous semi-ordered linear space where a functional m(a) $(a \in R)$ is defined such as the following seven properties are satisfied:

- 1) $0 \le m(a) \le +\infty$ for all $a \in R$;
- 2) if $m(\xi a) = 0$ for all $\xi \ge 0$, then a = 0;
- 3) for any $a \in R$ there exists $\alpha > 0$ such that $m(\alpha a) < +\infty$;
- (M) 4) for any $a \in R$, $m(\xi a)$ is a convex function of ξ ;
 - 5) $|a| \leq |b|$ implies $m(a) \leq m(b)$;
 - 6) $a \smallfrown b = 0$ implies m(a+b) = m(a) + m(b);
 - 7) $0 \le a_{\lambda} \uparrow_{\lambda \in A} a^{2}$ implies $\sup_{\lambda \in A} m(a_{\lambda}) = m(a)$.

This functional m(a) $(a \in R)$ is called a modular on R. The well-known space $L_p([0,1])$ $(p \ge 1)$ is one of examples of the modulared semi-ordered linear space, putting $m_p(a) = \int_a^1 \frac{1}{p} |a(t)|^p dt$ $(p \ge 1)$.

Let R be a universally continuous semi-ordered linear space and \overline{R} be the conjugate space of R, that is, the space of all universally continuous linear functionals on R. Especially when R is a modulared semi-ordered linear space by modular m(a) $(a \in R)$, a functional $\overline{a} \in \overline{R}$ is said to be modular bounded if $\sup_{m(a) \leq 1} |(a, \overline{a})| < +\infty$. The space of all modular bounded functionals \overline{R}^m is a universally continuous semi-ordered linear space. When we put for $\overline{a} \in \overline{R}$

(1)
$$\overline{m}(\overline{a}) = \sup_{a \in R} \{(a, \overline{a}) - m(a)\} \ (\overline{a} \in \overline{R}),$$

¹⁾ A semi-ordered linear space R is said to be universally continuous if for any system $a_{\lambda} \ge 0$ ($\lambda \in \Lambda$) there exists an element $\bigcap_{\lambda \in \Lambda} a_{\lambda}$ in R ([1], p. 17).

²⁾ For any $\lambda_1, \lambda_2 \in \Lambda$ there exists $\lambda_3 \in \Lambda$ such that $a_{\lambda_1} \smile a_{\lambda_2} \leq a_{\lambda_3}$ and $\bigcup_{\lambda \in \Lambda} a_{\lambda} = a$.

³⁾ A linear functional \overline{a} , (a, \overline{a}) $(a \in R)$, is said to be universally continuous, if for any $a_{\lambda \downarrow \lambda \in A}$ 0 we have $\inf_{\lambda \in A} |(a_{\lambda}, \overline{a})| = 0$ ([1], p. 81).