MONOTONY AND FLATNESS OF THE NORMS BY MODULARS

By

Ichiro AMEMIYA, Tsuyoshi ANDÔ and Masahumi SASAKI

§1. Introduction

Let R be a modulared semi-ordered linear space with a modular m^{1} . We define the two norms on R by the formulas:

(a)
$$||x|| = \inf_{\varepsilon > 0} \frac{1 + m(\varepsilon x)}{\varepsilon}$$

(b)
$$||| x ||| = \inf_{m(\xi x) \le 1} \frac{1}{|\xi|}.$$

The norms ||x|| and |||x||| are called the first norm and the second norm by *m* respectively.

 \widetilde{R} denotes the totality of all linear functionals which are bounded under the norm ||x||. The associated modular \widetilde{m} of m is defined on \widetilde{R} by the formula:

(c)
$$\widetilde{m}(\overline{x}) = \sup_{x \in R} \{\widetilde{x}(x) - m(x)\}$$
 for all $\widetilde{x} \in R$.

The functional \tilde{m} satisfies all the modular conditions (cf. [2, §38]). We know (cf. [3, §§80-83])

(d)
$$m(a) = \sup_{\widetilde{x} \in \widetilde{R}} \{ \widetilde{x}(a) - \widetilde{m}(\widetilde{x}) \}$$
 for all $a \in R$,

and

(e)
$$||a|| = \sup_{\widetilde{m}(\widetilde{x}) \leq 1} |\widetilde{x}(a)|$$
 for all $a \in R$.

The first and second norms satisfy always

(f) $|||x||| \le ||x|| \le 2 |||x|||$ for all $x \in R$, and a fortiori, they are equivalent (cf. [3, §83]). The first and second

norms by the associated modular \widetilde{m} on \widetilde{R} are denoted by $||\widetilde{x}||$ and $|||\widetilde{x}|||$ respectively. Then we know ([3, §83]),

¹⁾ We use definitions, notation and terminology of [2,3].