ON CERTAIN PROPERTIES OF MODULAR CONVERGENCE

 $\mathbf{B}\mathbf{y}$

Masahumi SASAKI

Let R be a universally continuous semi-ordered linear space. A functional m(a) $(a \in R)$ is said to be a modular on R if it satisfies the following modular conditions:

- (1) $0 \le m(a) \le +\infty$ for all $a \in R$;
- (2) if $m(\xi a) = 0$ for all $\xi \ge 0$, then a = 0;
- (3) for any $a \in R$ there exists a > 0 such that $m(aa) < + \infty$;
- (4) for every $a \in R$, $m(\xi a)$ is a convex function of ξ ;
- (5) $|a| \leq |b|$ implies $m(a) \leq m(b)$;
- (6) $a \cap b = 0$ implies m(a+b) = m(a) + m(b);
- (7) $0 \le a_{\lambda} \uparrow_{\lambda \in A} a$ implies $m(a) = \sup_{\lambda \in A} m(a_{\lambda})$.

Throughout the paper we use the notations and terminologies used in [2]. Here $|w|-\lim_{\nu\to\infty}a_{\nu}=a$ or $w-\lim_{\nu\to\infty}a_{\nu}=a$ for $a,a_{\nu}\in R$ $(\nu=1,2,3,\cdots)$ means $\lim_{\nu\to\infty}|\bar{a}|(|a_{\nu}-a|)=0$ or $\lim_{\nu\to\infty}\bar{a}(a_{\nu}-a)=0$ respectively for any $\bar{a}\in \overline{R}^{m-1}$.

We assume that Δ is a point set, and that a countably additive non-negative measure $\mu(E)(E \in \Lambda)$ is defined for the σ -ring Λ of subsets of Δ . We suppose furthermore that the measure μ is complete (i.e. $\mu(E_1)=0$, $E_2 \subset E_1$ implies $E_2 \in \Lambda$, so $\mu(E_2)=0$), totally σ -finite (i.e. Δ is a countable union of sets of finite measure) and $\mu(\Delta)>0$.

If f(x) is an arbitrary real-valued μ -measurable function on Δ , and $\varphi(u)$ is a Young function, the space

is called Orlicz space.

¹⁾ \overline{R}^m be the modular conjugate space of R, i.e. \overline{R}^m is the space of the modular bounded universally continuous linear functionals on R. The conjugate modular \overline{m} of m is defined as $\overline{m}(\overline{a}) = \sup_{x \in R} \{\overline{a}(x) - m(x)\}$ for every $\overline{a} \in \overline{R}^m$.