ON THE COMMUTATIVE FAMILY OF SUBNORMAL OPERATORS

By

Takasi ITÔ

Introduction. Halmos has given in [3] the definition of a subnormal operator and the characteristic property of it. A bounded operator A defined on a Hirbert space $S_{\mathcal{L}}$ is said to be subnormal if there exist a Hirbert space $\overparen{\Re}$ containing $S \mathcal{S}$ and a bounded normal operator N on Ω such that $A x=N x$ for every x in 5 . Recently in [1] Bram has made Haimos' characterization simpler ([1], Theorem 1) and given another characteristic property ([1], Theorem 2) and some results about subnormal operators (for example, [1], Theorems 4, 7, 8, 9).

In this paper first we shall study the problem under what conditions it is possible to extend the commutative family of subnormal operators acting on a Hilbert space \mathcal{S} to the commutative family of normal operators on a Hirbert space \mathscr{T} containing 5. . Theorem 1 answers to this question. Then we shall give a generalization of Bram's theorems (for example Theorem 6 and Theorem 7) and another simpler proof of Bram's theorm about the spectrum of subnormal operators (Theorem 8). Theorem 3 is a generalization of Cooper's result in [2] (cf. [9], p. 393). Theorem 5 gives a new characterization of subnormal operators.

1. An abelian semi-group of subnormal operators. Throughout the paper, a Hirbert space is a vector space over the complex numbers, an operator is a bounded linear transformation unless denoted explicitly. For an operator A we denote by A^{*} an adjoint operator of A.

Lemma 1. Let $A_{l}(l=1,2, \cdots, n)$ be n commutative operators on a HILbert space 5 . If for every non-negative integer M and element $x_{i_{1}, i_{2}, \cdots, i_{n}}$ in $5\left(0 \leqq i_{l} \leqq M, l=1,2, \cdots, n\right)$

$$
\begin{equation*}
\sum_{\substack{i_{i}, j_{l} \geq 0 \\ l=1,2, \cdots, n}}^{M}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} \cdots A_{n}^{i_{2}} \cdot x_{j_{1}, j_{2}, \cdots, j_{n}}, \quad A_{1}^{j_{1}} A_{2}^{j_{2}} \cdots A_{n}^{j_{n}} x_{i_{1}, i_{2}, \cdots, i_{n}}\right) \geqq 0, \tag{1.1}
\end{equation*}
$$

then we have the inequality such that for every $M, x_{i_{1}, i_{2}, \cdots i_{n}}$ in $\mathcal{S}\left(0 \leqq i_{l} \leqq M\right.$, $l=1,2, \cdots, n)$ and non-negative integer $\nu_{l}(l=1,2, \cdots, n)$

