ON THE NORMAL BASIS THEOREMS AND THE EXTENSION DIMENSION

By

Kazuo KISHIMOTO, Takesi ONODERA and Hisao TOMINAGA

Recently, in his paper [7] one of the authors has presented several generalized normal basis theorems for a division ring extension, which contain as special cases the normal basis theorems given in [1] by Kasch (provided for division ring extensions). One of the purposes of this paper is to extend his results to simple rings. In §1, we shall prove those extensions, and add a decision condition for a normal basis element in a strictly Galois extension of a division ring, which is well-known in commutative case. Next, in §2, we shall treat exclusively an *F*-group of order p^e in a simple ring, and consider the relations between the extension dimension over the fixed subring and the order of the *F*-group. The principal theorem of §2 is an improvement of the result stated in [8] for a *DF*-group. As to notations and terminologies used in this paper, we follow [3] and [5].

§ 1. The following lemma has been given in $[7]^{1}$, and will play a fundamental role in our present study.

Lemma 1. Let $T \ni 1$ be a ring with minimum condition for right ideals, and let M, N be unital right T-modules.

(i) M is T-projective if and only if it is T-isomorphic to a direct sum of submodules each of which is T-isomorphic to a directly indecomposable direct summand of T.

(ii) If $M^{(m)} \simeq T^{(\omega)}$ for a positive integer m and an infinite cardinal number ω , then $M \simeq T^{(\omega)}$.

(iii) If $M^{(m)} \simeq T^{(t)}$ for positive integers m, t and t = mq + r $(0 \le r < m)$, then $M \simeq T^{(q)} \oplus M_0$, where M_0 is a T-homomorphic image of T such that $M_0^{(m)} \simeq T^{(r)}$. In particular, if m = t then $M \simeq T$.

(iv) If M is T-projective and $M^{(m)} \sim N^{(n)}$ with $m \leq n$ then $M \sim N$.

Theorem 1. Let \mathfrak{H} be an N-group with $B=J(\mathfrak{H}, A)$, and $N \ni 1$ an \mathfrak{H} -invariant subring of A with minimum condition for right ideals such that A possesses a finite (linearly independent) right N-basis $\{x_1, \dots, x_t\}$. If

¹⁾ Numbers in brackets refer to the references cited at the end of this paper.