ON THE REPRESENTATION OF LARGE EVEN INTEGERS AS SUMS OF TWO ALMOST PRIMES. II

By
Saburô Uchiyama

In a previous paper [3] the writer has given with Miss A. Togashi an elementary proof for the fact that every sufficiently large even integer is representable as a sum of two almost primes, each of which has at most three prime factors, a result first obtained by A. I. Vinogradov. On the other hand, we are able to prove by a rather transcendental method that every large even integer is representable as a sum of a prime and an almost prime composed of at most four prime factors (see [4]). The aim in the present paper is to show that a somewhat weaker result than this can be obtained by an elementary argument. We shall prove the following ${ }^{1)}$

Theorem. Every sufficiently large even integer N can be written in the form

$$
N=n_{1}+n_{2},
$$

where $n_{1}>1, n_{2}>1,\left(n_{1}, n_{2}\right)=1$ and

$$
V\left(n_{1}\right)+V\left(n_{2}\right) \leqq 5 .
$$

In other words, every large even integer N can be represented in the form $N=n_{1}+n_{2}$, where $n_{1}>1, n_{2}>1,\left(n_{1}, n_{2}\right)=1$ and either

$$
V\left(n_{1}\right)=1, \quad V\left(n_{2}\right) \leqq 4,
$$

or

$$
V\left(n_{1}\right) \leqq 2, \quad V\left(n_{2}\right) \leqq 3 .
$$

Our method of proving this result is a refinement of that of proving the previous one, used in [3].

The writer wishes to express his gratitude to M. Uchiyama, Computation Centre, Hokkaidô University, for providing various numerical data to him in

[^0]
[^0]: 1) Throughout in this paper, the letters i, j, k, m, n (with or without indices) represent positive integers, while p, q (with or without indices) represent prime numbers. We denote by $V(m)$ the total number of prime divisors of m.
