ON AN EQUIVALENCE RELATION ON SEMI-ORDERED LINEAR SPACES

By

Tetsuya SHIMOGAKI

§1. Let (E, Ω, μ) be a finite measure space with a countably additive non-negative measure μ defined on a σ -field Ω . Two real-valued μ -measurable functions f(t) and g(t) on E are called *mutually equi-measurable* [14], if $\mu\{t;$ $f(t) > r\} = \mu\{t; g(t) > r\}$ holds for each real number r. If we write $f \sim g$, when f and g are mutually equi-measurable, it is observed easily that the relation \sim is an equivalence relation on the space \mathfrak{M} of all measurable functions on E. As is shown in [14], the concept of equi-measurability plays an important rôle in the theory of functions of real variables. Now let X be a linear space consisting of real-valued measurable functions, which is *semi-normal* in the sense of Nakano [11], i.e.

$$(1.1) 0 \leq f \in \mathbf{X}, |g| \leq f, g \in \mathfrak{M} \text{ implies } g \in \mathbf{X},$$

where $0 \leq f$ means that $0 \leq f(t)$ holds almost everywhere. Evidently the function space X is considered as a universally continuous semi-ordered linear space¹ by this order.

We say that a function space X has the weak rearrangement invariant property (w-RIP), if $f \in X$, $f \sim g$ always implies $g \in X$, i. e. X is closed under the relation defined by equi-measurability. In the sequel, a function space X on E is termed to be a Banach function space² on E, if it is semi-normal and has a complete norm satisfying

(1.2)
$$||f|| = \sup_{\lambda \in A} ||f_{\lambda}||$$
, whenever $0 \leq f_{\lambda} \uparrow_{\lambda \in A} f$.

A Banach function space X is said to have the strong rearrangement invariant property (s-RIP), if $f \in X$, $f \sim g$ implies $g \in X$ and $||g|| \leq A ||f||$, where A is a fixed constant independent on f and g. $L^{p}(E)$ spaces with $1 \leq p$, Orlicz spaces $L_{\phi}(E)$ and $\Lambda(\phi)$ -spaces established by G. G. Lorentz [5, 6] and I. Halperin

¹⁾ A semi-ordered linear space R is called *universally continuous*, if $0 \le a_{\lambda}$ ($\lambda \in \Lambda$) implies $\bigcap_{\lambda \in \Lambda} a_{\lambda} \in R$, i.e. a conditionally complete vector lattice in Birkhoff's sense or a K-space in the sense of Vulich [12].

²⁾ For the detailed properties of Banach function spaces see [7] or [13].