ON THE DISTRIBUTION OF ALMOST PRIMES IN AN ARITHMETIC PROGRESSION

By

Saburô UCHIYAMA

1. Introduction. An almost prime is a positive integer the number of whose prime divisors is bounded by a certain constant. The purpose of this paper is to deal with an existence problem of almost primes in a short arithmetic progression of integers. We shall prove the following

Theorem. Let k and l be two integers with $k \ge 1$, $0 \le l \le k-1$, (k, l)=1. There exists a numerical constant $c_1 > 0$ such that for every real number $x \ge c_1 k^{3.5}$ there is at least one integer n satisfying

$$x < n \leq 2x$$
, $n \equiv l \pmod{k}$, $V(n) \leq 2$,

where V(n) denotes the total number of prime divisors of n. In particular, if we write a(k, l) for the least positive integer n (>1) satisfying

 $n \equiv l \pmod{k}, \qquad V(n) \leq 2,$

then we have

 $a(k, l) < c_2 k^{3.5}$

with some absolute constant $c_2 > 0$.

It is of some interest to compare our results presented above, though they are not the best possible, with a recent result of T. Tatuzawa [5] on the existence of a prime number p satisfying $x , <math>p \equiv l \pmod{k}$ and a celebrated theorem of Yu. V. Linnik concerning the upper bound for the least prime $p \equiv l \pmod{k}$ (cf. [3: X]).

Our proof of the theorem is based essentially upon the general sieve methods due to A. Selberg. The deepest result which we shall refer to is:

$$\pi(x) = \lim x + O\left(x \exp(-c_3(\log x)^{1/2})\right)$$

with a positive constant c_3 , where $\pi(x)$ denotes, as usual, the number of primes not exceeding x (in fact, a slightly weaker result will suffice for our purpose). Apart from this, the proof is entirely elementary.

Notations. Throughout in the following, k represents a fixed positive