ON THE DISTRIBUTION OF ALMOST PRIMES IN AN ARITHMETIC PROGRESSION

By
Saburô UCHIYAMA

1. Introduction. An almost prime is a positive integer the number of whose prime divisors is bounded by a certain constant. The purpose of this paper is to deal with an existence problem of almost primes in a short arithmetic progression of integers. We shall prove the following

Theorem. Let k and l be two integers with $k \geqq 1,0 \leqq l \leqq k-1,(k, l)=1$. There exists a numerical constant $c_{1}>0$ such that for every real number $x \geqq c_{1} k^{3.5}$ there is at least one integer n satisfying

$$
x<n \leqq 2 x, \quad n \equiv l \quad(\bmod k), \quad V(n) \leqq 2
$$

where $V(n)$ denotes the total number of prime divisors of n. In particular, if we write $a(k, l)$ for the least positive integer $n(>1)$ satisfying

$$
n \equiv l \quad-(\bmod k), \quad V(n) \leqq 2
$$

then we have

$$
a(k, l)<c_{2} k^{3.5}
$$

with some absolute constant $c_{2}>0$.
It is of some interest to compare our results presented above, though they are not the best possible, with a recent result of T. Tatuzawa [5] on the existence of a prime number p satisfying $x<p \leqq 2 x, p \equiv l(\bmod k)$ and a celebrated theorem of Yu. V. Linnik concerning the upper bound for the least prime $p \equiv l(\bmod k)(c f .[3: X])$.

Our proof of the theorem is based essentially upon the general sieve methods due to A. Selberg. The deepest result which we shall refer to is:

$$
\pi(x)=\operatorname{li} x+O\left(x \exp \left(-c_{3}(\log x)^{1 / 2}\right)\right)
$$

with a positive constant c_{3}, where $\pi(x)$ denotes, as usual, the number of primes not exceeding x (in fact, a slightly weaker result will suffice for our purpose). Apart from this, the proof is entirely elementary.

Notations. Throughout in the following, k represents a fixed positive

