ON HAAR FUNCTIONS IN THE SPACE $L_{M(\hat{s},t)}$

By

Jyun ISHII and Tetsuya SHIMOGAKI

1. It is well known [6, 8, 12] that Haar functions constitute a (Schauder) basis in Banach spaces $L^p[0, 1]$ $(1 \le p < +\infty)$ and Orlicz spaces $L_M[0, 1]$ with the Δ_2 -condition. Generalizing this fact to an arbitrary separable Banach function space E on a measure space, H. W. Ellis and I. Halperin showed in [3] that Haar system of functions (in an extended sense) composes a basis in E, if a norm of E satisfies a condition called *levelling length property*¹). Although this condition is sufficiently general, yet it is not always a necessary one.

In this note we shall show a sufficient condition in order that Haar functions be a basis for the Banach function space $L_{\mathcal{M}(\xi,t)}[0,1]$ or $L^{p(t)}[0,1]$. In fact, we shall establish, as for the space $L^{p(t)}$, that if p(t) satisfies the Lipschitz α -condition ($0 < \alpha \leq 1$) then Haar functions constitute a basis in $L^{p(t)}$ (Theorem 4). As a matter of course, the norms of these spaces do not satisfy the above condition given in [3] except some special cases.

In 2 we shall introduce Haar functions, the function spaces $L_{M(\xi,t)}$ and $L^{p(t)^2}$ with the notations used here. The main theorems shall be stated in 3, and some remarks shall be presented in 4.

2. A sequence of functions defined on [0,1]: $\{\chi_{\nu}(t)\}_{\nu=1}^{\infty}$ is called a system of Haar functions, if $\chi_1(t)=1$ for all $t \in [0,1]$ and for $\nu = 2^n + k \ (n=0,1,2,\cdots;k=1,2,\cdots,2^n)^{3}$

(2.1)
$$\chi_{\nu}(t) = \chi_{2^{n+k}}(t) = \begin{cases} \sqrt{2^{n}} & \text{for } t \in \left[\frac{2k-2}{2^{n+1}}, \frac{2k-1}{2^{n+1}}\right], \\ -\sqrt{2^{n}} & \text{for } t \in \left(\frac{2k-1}{2^{n+1}}, \frac{2k}{2^{n+1}}\right], \\ 0 & \text{otherwise in } [0,1]. \end{cases}$$

¹⁾ A norm $\|\cdot\|$ of E is called to have the *levelling length property*, if $\|f_e\| \le \|f\|$ holds for any $f \in E$ and measurable set e, where f_e coincides with f outside the e and on e, $f_e = \left\{\frac{1}{d(e)}\int_e f(t)dt\right\}C_e$ (C_e is the characteristic function of e). This property was first discussed by them in the earlier paper [4]. At the same time, G. G. Lorentz and D. G. Wertheim also found it independently and named it the *average invariant property* [9].

²⁾ In the sequel, we eliminate [0,1] and write simply $L_{\mathcal{M}(\xi,t)}$ (or $L^{p(t)}$) in place of $L_{\mathcal{M}(\xi,t)}$ [0,1] (resp. $L^{p(t)}$ [0,1]). $L^{p(t)}$ was first discussed by W. Orlicz in [11], and was investigated precisely by H. Nakano [10].

³⁾ This formulation of Haar functions is due to Z. Ciesielskii [2].