SOME THEOREMS ON GALOIS THEORY OF SIMPLE RINGS

By
Takasi Nagahara and Hisao Tominaga

Recently, in [7], we have succeeded in constructing Galois theory of simple rings under the assumption that the extension R / S considered is hereditarily Galois (h-Galois) and locally finite. However, we have believed that [7, Theorem 2.1] and [7, Theorem 3.1] should be stated under more desirable assumptions. One of the purposes of the present paper is to give a settlement to this problem. Concerning [7, Theorem 2.1], one will see that the assumption that R / S is locally finite can be excluded from those assumed there (Theorem 1). On the other hand, as was shown in [7, Lemma 3.4], if R / S is h-Galois and locally finite then $\left(\$ R_{r}\right.$ is dense in $\operatorname{Hom}_{s_{l}}(R, R)$. In $\S 1$, one will see also that if R / S is locally finite and $\oiint R_{r}$ is dense in $\operatorname{Hom}_{S_{l}}(R, R)$ then the fundamental theorems in Galois theory of finite dimension hold still for regular intermediate rings of R / S left finite over S (Theorems 2 ond 3). And, if R / S is locally finite, $\mathscr{S} R_{r}$ dense in $\operatorname{Hom}_{S_{l}}(R, R)$, and $V_{R}\left(V_{R}\left(S^{\prime}\right)\right)$ is simple for each regular intermediate ring $S^{\prime \prime}$ of R / S with $\left[S^{\prime}: S\right]_{l}<\infty$, then [7, Theorem 3.1] is still valid èven for a regular intermediate ring R^{\prime} of R / S (Theorem 6). The proof of this improvement will be given in $\S 3 . \$ 2$ is devoted exclusively to the treaty of algebraic Galois extensions, which is our second purpose. In fact, Theorem 4 may be regarded as a complete extension of [2, Theorem 3] to simple rings as well as an improvement of [7, Lemma 1.9]. §2 contains also a sharpening of [7, Lemma 1.10] (Theorem 5).

Throughout the present paper, $R=\sum_{1}^{n} D \mathrm{e}_{i j}$ be a simple ring, where $e_{i j}$'s are matrix units and $D=V_{R}\left(\left\{e_{i j}{ }^{\prime} s\right\}\right)$ is a division ring. And S be always a simple subring of R (containing 1 of R), \sqrt{G} the group of all the S (ring) automorphisms of R. Further, we set $C=V_{R}(R), Z=V_{S}(S), V=V_{R}(S), H=V_{R}(V)$ and $C_{0}=$ $V_{V}(V)$. As to general notations and terminologies used here we follow the previous paper [7].

1. Now, we shall begin our study with the following lemma.

Lemma 1. Let S be a regular subring of R, and \mathfrak{S} a subgroup of (3) containing \widetilde{V}. If T is an intermediate ring of R / S left finite over S such that R is T-R-irreducible, and $T^{\prime}=J(\mathfrak{S}(T, R))$, then $\infty>\left[(\mathfrak{g} \mid T) R_{r}: R_{r}\right]_{r}$

