AN INVERSE THEOREM OF GROSS'S STAR THEOREM

Dedicated to Prof. Kinjiro Kunugi on his 60th birthday

By

Zenjiro KURAMOCHI

Let w = w(z) be an analytic function of z in a Riemann surface R whose values fall on the w-sphere. Let $z = z^{-1}(w)$ be its inverse. Let $e(w, w_0)$ be an arbitrary regular element of $z^{-1}(w)$. We continue analytically $e(w, w_0)$, using only regular element (without any algebraic element) along every ray: $\arg(w - w_0) = \theta$ ($0 \le \theta < 2\pi$) toward infinity. Then, there arise two cases whether the continuation defines a singularity ω_{θ} in a finite distance or not, in the former case, we call the ray a singular ray. For each singular ray: $\arg(w - w_0) = \theta$, we exclude the segment between the singularity ω_{θ} and $w = \infty$ from the w-plane. The remaining domain Ω is clearly a (single valued) regular branch of $z = z^{-1}(w)$. Let $\rho = \rho(\theta)$ the polar coordinate of the singularity ω_{θ} or ∞ according as the singular ray exists or not. Then $\rho(\theta)$ is clearly lower semicontinuous and $S_n = E[\theta: \rho(\theta) \le n]$ is closed. We call the set $E[\theta: \rho(\theta) < \infty]$ the singular set S of Ω . Then by $S = \sum_{n=1}^{\infty} S_n S$ is an F_{σ} set. Then the famous Gross's Star Theorem is as follows:

Theorem. Let R be a domain such that $R = E[z:|z| < \infty]$ in the zplane and let f(z) be an analytic function of $z \in R$ whose values fall on the w-plane. Let Ω be a star domain. Then S is a set of linear measure zero.

This theorem was extended by M. Tsuji¹⁾ to the case : R is a domain in the z-plane such that the boundary of R is a set of capacity zero and also extended by Z. Yûjôbo²⁾ to the case : R is a Riemann surface with nullboundary. The method used by them is essentially the same as used by W. Gross. On the other hand, T. Yoshida³⁾ showed that the Gross's theorem holds for not only conformal mappings but also for quasiconformal mappings

¹⁾ M. TSUJI: Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero, Jap. Journ. Math., 19 (1944-1948).

²⁾ Z. YUJÔBÔ: On the Riemann surfaces, no Green function of which exists, Math. Japonicae, 2 (1951).

³⁾ T. YOSHIDA: On the behaviour of a pseudo-regular functions in a neighbourhood of a closed set of capacity zero, Proc. Japan Acad., 26 (1950).