ON QUASI-GALOIS EXTENSIONS OF DIVISION RINGS

Dedicated to Prof. Kinjiro Kunugi on his 60th birthday

By

Takasi NAGAHARA and Hisao TOMINAGA

Throughout the present paper, R be always a division ring, and S a division subring of R. And, we use the following conventions: $C = V_R(R)$, $V = V_R(S)$, $H = V_R^2(S) = V_R(V_R(S))$, and further for any subrings $R_1 \supseteq R_2$ of R the set of all R_2 -(ring) isomorphisms of R_1 into R will be denoted as $\Gamma(R_1/R_2)$. As to other notations and terminologies used in this paper, we follow the previous one [3]. We consider here the following conditions:

(I) If S' is a subring of R properly containing S with $[S':S]_{i} < \infty$ then $\Gamma(S'/S) \neq 1$.

(I₀) If S' is a subring of R properly containing S with $[S':S]_r < \infty$ then $\Gamma(S'/S) \neq 1$.

(I') H/S is Galois.

(II) If $S_1 \supseteq S_2$ are intermediate rings of R/S with $[S_1:S]_z < \infty$ then $\Gamma(S_1/S) | S_2 = \Gamma(S_2/S)$.

(II₀) If $S_1 \supseteq S_2$ are intermediate rings of R/S with $[S_1:S]_r < \infty$ then $\Gamma(S_1/S) | S_2 = \Gamma(S_2/S)$.

(II') If $T_1 \supseteq T_2$ are intermediate rings of R/H with $[T_1:H]_l < \infty$ then $\Gamma(T_1/S) | T_2 = \Gamma(T_2/S)^{1}$.

(II'_0) If $T_1 \supseteq T_2$ are intermediate rings of R/H with $[T_1:H]_r < \infty$ then $\Gamma(T_1/S) | T_2 = \Gamma(T_2/S)$.

Following [5], R/S is said to be (left)quasi-Galois when (I) and (II) are fulfilled. Symmetrically, if (I_0) and (II_0) are done, we shall say R/S is *right-quasi-Galois*. In [5], we can find some fundamental theorems of quasi-Galois extensions. The purpose of the present paper is to expose several additional theorems concerning such extensions. At first, we shall recall the following lemmas which have been obtained in [4] and [5].

Lemma 1. If S' is an intermediate ring of R/S then $[V: V_R(S')]_r \leq$

¹⁾ In [5], the condition that if T is an intermediate ring of R/H with $[T:H]_{l} < \infty$ then $\Gamma(T/S) | H = \Gamma(H/S)$ was cited as (II'). However, it will be rather natural to alter it like above.