NOTE ON DECOMPOSITION SETS OF SEMI-PRIME RINGS

By
Kazuo Kishimoto and Yoshiki KURATA

Introduction. As has been observed by Jacobson the set $\mathfrak{P}=\mathfrak{P}(A)$ of all primitive ideals of a ring A may be made into a topological space endowed with Stone's topology, and recently, concerning topological properties of the structure space, Suliński [8] obtained some structure theorems of a semi-simple ring which is represented as a subdirect sum of simple rings with unity.

In this note, we shall extend his results to semi-prime rings and give necessary and sufficient conditions for a semi-prime ring to have a minimal decomposition set.
§ 1. First of all, we shall prove the following extension of $\dot{[} 1$, Theorem 1].

Lemma 1. Let T be an ideal of a ring A.
(1) If p is a prime ideal of A then $T \frown p$ is a prime ideal of the ring T and if moreover p does not contain T then $(p \frown T: T)^{11}=p$.
(2) ${ }^{2)}$ If p_{1} is a prime ideal of the ring T, then there exists a prime ideal p of A such that $p \frown T=p_{1}$ and, if $p_{1} \neq T$, then $\left(p_{1}: T\right)=p$.

Proof. (1) By [6, Lemma 2], $T \frown p$ is a prime ideal of the ring T. Assume that p does not contain T. Then $T \cdot(p \frown T: T) \subseteq p$ implies $(p \frown T: T)$ $\leqq p$ and hence we have $(p \frown T: T)=p$.
(2) Let B be the ideal of A generated by p_{1} and let x be an arbitrary element of $B \frown T$. Since $x T x T x \subseteq T B T \subseteq p_{1}$ and p_{1} is a prime ideal in T, x belongs to p_{1}, and hence $T \frown B=p_{1}$. The complement C of p_{1} in T is an m-system (in T whence) in A and does not meet B. By Zorn's lemma, there exists a prime ideal p of A containing B such that p does not meet C and satisfies $T \frown p=p_{1}$. Moreover, if $p_{1} \neq T$ then p can not contain T, and hence, by (1), we have $\left(p_{1}: T\right)=p$.

A ring A is called a semi-prime ring if it is isomorphic to a subdirect sum of prime rings, i.e., if there exist prime ideals $p_{\alpha}(\alpha \in \Lambda)$ of

1) We shall denote by ($p \frown T: T$) the set $\{a \in A ; T a \subseteq p \frown T\}$.
2) Cf. [3] and [7].
