NOTE ON DECOMPOSITION SETS OF SEMI-PRIME RINGS

By

Kazuo KISHIMOTO and Yoshiki KURATA

Introduction. As has been observed by Jacobson the set $\mathfrak{P}=\mathfrak{P}(A)$ of all primitive ideals of a ring A may be made into a topological space endowed with Stone's topology, and recently, concerning topological properties of the structure space, Suliński [8] obtained some structure theorems of a semi-simple ring which is represented as a subdirect sum of simple rings with unity.

In this note, we shall extend his results to semi-prime rings and give necessary and sufficient conditions for a semi-prime ring to have a minimal decomposition set.

§ 1. First of all, we shall prove the following extension of [1, Theorem 1].

Lemma 1. Let T be an ideal of a ring A.

- (1) If p is a prime ideal of A then T
 subseteq p is a prime ideal of the ring T and if moreover p does not contain T then $(p
 subseteq T: T)^{1} = p$.
- (2)²⁾ If p_1 is a prime ideal of the ring T, then there exists a prime ideal p of A such that $p \cap T = p_1$ and, if $p_1 \neq T$, then $(p_1: T) = p$.
- *Proof.* (1) By [6, Lemma 2], $T \cap p$ is a prime ideal of the ring T. Assume that p does not contain T. Then $T \cdot (p \cap T : T) \subseteq p$ implies $(p \cap T : T) \subseteq p$ and hence we have $(p \cap T : T) = p$.
- (2) Let B be the ideal of A generated by p_1 and let x be an arbitrary element of $B \cap T$. Since $xTxTx \subseteq TBT \subseteq p_1$ and p_1 is a prime ideal in T, x belongs to p_1 , and hence $T \cap B = p_1$. The complement C of p_1 in T is an m-system (in T whence) in A and does not meet B. By Zorn's lemma, there exists a prime ideal p of A containing B such that p does not meet C and satisfies $T \cap p = p_1$. Moreover, if $p_1 \neq T$ then p can not contain T, and hence, by (1), we have $(p_1:T) = p$.

A ring A is called a semi-prime ring if it is isomorphic to a subdirect sum of prime rings, i.e., if there exist prime ideals p_{α} ($\alpha \in A$) of

¹⁾ We shall denote by $(p \frown T: T)$ the set $\{a \in A; Ta \subseteq p \frown T\}$.

²⁾ Cf. [3] and [7].