ON THE EXISTENCE OF FUNCTIONS OF EVANS'S TYPE

by

Zenjiro KURAMOCHI

We proved the following

Theorem¹⁾. Let R be a Riemann surface with null-boundary. Then there exists a harmonic function U(z) such that U(z) has a negative logarithmic pole at $p \in R$ and $U(z) \rightarrow \infty$ as z tends to the ideal boundary.

Recently M. Nakai extended the above theorem as follows:

Theorem²). Let R be a Riemann surface with positive boundary. Let G(z, p) be the Green's function of R with pole at p. Put $G_s = E[z \in R : G(z, p) > \delta]$. Then there exists a harmonic function in R such that $D(\min(M, U(z))) \le M\alpha < \infty$ and $U(z) \to \infty$ as z tends of the boundary of R in G_s for any $\delta > 0$ and that any positive harmonic function $V(z)(\le U(z))$ must be zero, where α is a constant.

We consider the existence of functions of Evans's type for more general sets and obtain some results which contain the above two theorems as their special applications.

1. Generalized Green's function³⁾. Let R be a Riemann surface with positive boundary. Let R_n $(n=1, 2, \cdots)$ be its exhaustion with compact relative boundary ∂R_n . Let $G^{(4)}$ be a subsurface in R. Let $w_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-(G\cap(R-R_n))$ such that $w_{n,n+i}(z)=0$ on $\partial R_{n+i}-G$ and $w_{n,n+i}(z)=1$ on $G\cap(R-R_n)$. We call $\lim_{n \to i} \lim_{i \to i} w_{n,n+i}(z)$ the harmonic measure (H.M.) of the boundary $(B\cap G)$ determined by G and denote it by $w(G\cap B,$ z, R). As for a set F in R. Let w(F, z, R) be the least positive harmonic function in R-F and =1 on F. We call w(F, z, R) H.M. (harmonic measure) of F. Let $G_1 \supset G_2$ be subdomains in R. Let $w_{n,n+i}(z)$ be a harmonic function

¹⁾ Z. KURAMOCHI: Mass distributions on the ideal boundaries of abstract Riemann surfaces, I. Osaka Math. J., 8, 119–138 (1956).

²⁾ M. NAKAI: Green potential of Evans type on Royden's compactification of a Riemann surface. Nagoya Math. J., 24, 205-239 (1964).

³⁾ Z. KURAMOCHI: On harmonic functions representable by Poisson's integral. Osaka Math. J., 10, 103-117 (1958).

⁴⁾ In this paper relative boundary ∂G of a subsurface G consists of enumberably infinite number of analytic curves clustering nowhere in R.