# A CHARACTERIZATION OF STRONGLY SEPARABLE ALGEBRAS*) 

By

## Takesi ONODERA

§ 1. In his paper [2] T. Kanzaki introduced the notion of strongly separable algebras over a commutative ring and obtained an interesting characterization of such algebras [2, Theorem 1].

Throughout the present note, $A \ni 1$ will represent always an algebra over a commutative ring $R \ni 1$, and $C$ the center of $A$.

Let $P$ be the set of elements $\sum x_{i} \otimes y_{i}$ in $A \otimes_{R}^{\otimes} A$ such that $\sum x_{i} x \otimes y_{i}=$ $\sum x_{i} \otimes x y_{i}$ for all $x$ in $A$, and let $\varphi$ be the $A-A$-(module-) homomorphism of $A \otimes_{R} A$ into $A$ defined by $\varphi\left(\sum x_{i} \otimes y_{i}\right)=\sum x_{i} y_{i}$. If $\varphi(P)$ contains 1 , then $A$ is said to be a strongly separable ( $R$-) algebra. (The definition is somewhat different from the original one in [2]. But, as is easily seen, the two definitions are equivalent).

The purpose of the present note is to give an another characterization of a strongly separable algebra $A$ when it is $R$-finitely generated and projective (Theorem 2).
§ 2. $A$ is said to be a Frobenius (resp. symmetric) algebra if $A$ is a finitely generated, projective $R$-module and there exists an $A$-isomorphism: $A_{A} \cong$ $\operatorname{Hom}_{R}(A, R)_{A}$ (resp. $\left.{ }_{A} A_{A} \cong{ }_{A} \operatorname{Hom}_{R}(A, R)_{A}\right)$, where $\operatorname{Hom}_{R}(A, R)$ is regarded as an $A-A$-module by the following operations:

$$
b f a(x)=f(a x b) \quad a, b, x \in A, f \in \operatorname{Hom}_{R}(A, R)
$$

At first we shall quote here the following theorem which is due to Kanzaki [2, Theorem 1].

Theorem 1. A is a strongly separable (R-) algebra if and only if $A$ is a separable ( $R-$ ) algebra and $A=C \oplus[A, A]$, as $C$-module, where $[A, A]$ is the $C$-submodule of $A$ generated by all $x y-y x(x, y$ in $A)$.

Lemma 1. Let $B \ni 1$ be a ring, and $Z$ the center of $B$. If $B=Z \oplus[B, B]$ as $Z$-module, then $\operatorname{Hom}_{Z}(B, Z)^{B}$ (the set of elements $f$ in $\operatorname{Hom}_{z}(B, Z)$ such that $a f=$ fa for all $a$ in $B$ ) is a free Z-module of rank 1.

[^0]
[^0]:    *) This study was supported in part by the Sakkokai Foundation.

