ON A DIFFERENTIAL-DIFFERENCE EQUATION

By

Saburô Uchiyama

In connexion with the study of certain incomplete sums of multiplicative functions, N. G. de Bruijn and J. H. van Lint [3] have introduced the function $f_{s}(x)(s \geqq 0)$ satisfying the set of conditions:
(i) $f_{s}(x)=0$ for $x<0$,
(ii) $f_{s}(x)$ is continuous for $x>0$,
(iii) $f_{s}(x)=x^{3-1}$ for $0<x \leqq 1$,
(iv) $\quad x f_{s}^{\prime}(x)=(s-1) f_{s}(x)-s f_{s}(x-1)$ for $\quad x>1$.
(The function $f_{s}(x)$ is originally defined in [3; II, §2] only for $x>0$; it will be convenient, however, to define $f_{s}(x)=0$ for $x<0$ for our purpose.)

On the other hand, N. G. de Bruijn [1 and 2] has investigated in detail the property and behaviour of $f_{s}(x)$ for $s=1$. In particular, there he obtained an explicit formula for $f_{1}(x)$:

$$
f_{1}(x)=\frac{e^{\sigma}}{2 \pi i} \int_{-i \infty}^{i \infty} \exp \left(-x t+\int_{0}^{t} \frac{e^{z}-1}{z} d z\right) d t \quad(x>0)
$$

where C is Euler's constant,

$$
C=\lim _{n \rightarrow \infty}\left(\sum_{m=1}^{n} \frac{1}{m}-\log n\right)
$$

In the present note we shall prove an analogous formula for $f_{s}(x)$ with general $s>0$.

Remark. For $s=0$ it is easy to see that $f_{s}(x)=f_{0}(x)=x^{-1}(x>0)$. We may suppose, therefore, that $s>0$ throughout in the following.

1. Lemmata. We require two lemmas independent of one another.

Lemma 1. If $\phi(s)$ is a (complex valued) continuous function defined for $s>0$ and satisfying the functional equation

$$
\phi(s+r)=\phi(s) \phi(r) \quad(s>0, r>0)
$$

then there is an integer A independent of s such that

$$
\phi(s)=e^{? \pi i A s}(\phi(1))^{s} \quad(s>0)
$$

