FINITE OUTER GALOIS THEORY OF NON-COMMUTATIVE RINGS

By

Yôichi MIYASHITA

Contents

§ 0.	Introduction	114
§ 1.	Galois extension and normal basis	115
§ 2.	The first characterization of fixed-subrings	118
§ 3.	The second characterization of fixed-subrings	121
§ 4.	Extension of isomorphisms.	122
§ 5.	Heredity of Galois extensions	123
§ 6.	Completely outer case	126
§7.	Several results.	130

§0. Introduction. It is the purpose of this paper to extend the Galois theory of commutative rings given by S. U. Chase, D. K. Harrison and A. In what follows, for the sake of Rosenberg [4] to non-commutative case. simplicity, we shall state main results for directly indecomposable rings: Let $A \ni 1$ be a directly indecomposable ring, G a finite group of automorphisms of A, and $B = A^{\sigma} = \{x \in A; \sigma(x) = x \text{ for all } \sigma \text{ in } G.\}$. We call A/B a G-Galois extension if there are elements a_1, \dots, a_n ; a_1^*, \dots, a_n^* in A such that $\sum_i a_i \cdot \sigma(a_i^*) =$ $\delta_{1,\sigma}(\sigma \in G)$, where $\delta_{1,\sigma}$ means Kronecker's delta. If $V_A(B) = C$ (the center of A), then A/B is a G-Galois extension if and only if the mapping $x \otimes y \rightarrow xy$ from $A \otimes_{B} A$ to A splits as an A-A-homomorphism (Th. 1.5). Let A/B be a G-Galois extension, and A' a G-invariant subring of A, i.e., $\sigma(A') = A'$ for all σ in G, and put $B' = A'^{G}$. If A'/B' is a G-Galois extension and $B'_{B'}$ is a direct summand of $A'_{B'}$, then there hold the following. (1) For any subgroup H of G, $A^{H} = B \otimes_{B'} A'^{H} = A'^{H} \otimes_{B'} B$. (2) Let $\{\overline{T}\}$ be the set of all G-invariant intermediate rings of A/A', and $\{T\}$ the set of all intermediate rings of B/B' such that A'T = TA'. Then, $\overline{T} \rightarrow \overline{T} \cap B$ and $T \rightarrow A'T = TA'$ are mutually converse order isomorphisms between $\{\bar{T}\}$ and $\{T\}$, and $\bar{T}/(\bar{T}\cap B)$ is a G-Galois extension (Th. 5.1).

Let A/B be a G-Galois extension, $V_A(B) = C$, and B_B a direct summand of A_B . Then there hold the following: (1) G coincides with the set of all *B*-automorphisms of A (Th. 4.2). (2) For any subgroup H of G, { $\sigma \in G$; $\sigma | A^H = 1_A \pi$ } = H. (3) If T is an intermediate ring of A/B, the following are