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\S 0. Introduction. It is the purpose of this paper to extend the Galois
theory of commutative rings given by S. U. Chase, D. K. Harrison and A.
Rosenberg [4] to non-commutative case. In what follows, for the sake of
simplicity, we shall state main results for directly indecomposable rings: Let
$A\ni 1$ be a directly indecomposable ring, $G$ a finite group of automorphisms of
$A$ , and $B=A^{e}=$ {$x\in A;a(x)=x$ for all $\sigma$ in $G.$ }. We call $A/B$ a G-Galois
extension if there are elements $a_{1},$ $\cdots,a_{n}$ ; $a_{1}^{*},$ $\cdots,a_{n}^{*}$ in $A$ such that $\sum_{i}a_{t}\cdot\sigma(a_{i}^{*})=$

$\delta_{1,\sigma}(\sigma\in G)$ , where $\delta_{1,\sigma}$ means Kronecker’s delta. If $V_{A}(B)=C$ (the center of $A$),

then $A/B$ is a G-Galois extension if and only if the mapping $x\otimes y\rightarrow xy$ from
$A\otimes_{B}A$ to $A$ splits as an A-A-homomorphism (Th. 1.5). Let $A/B$ be a G-
Galois extension, and $A^{\prime}$ a G-invariant subring of $A,$ $i.e.,$ $\sigma(A^{\prime})=A$

‘ for all
$\sigma$ in $G$ , and put $B^{\prime}=A^{\prime e}$ . If $A^{\prime}/B^{\prime}$ is a G-Galois extension and $B_{B^{\prime}}^{\prime}$ is a direct
summand of $A_{B^{\prime}}^{\prime}$ , then there hold the following. (1) For any subgroup $H$ of
$G,$ $A^{H}=B\otimes_{B^{\prime}}A^{\prime H}=A^{\prime H}\otimes_{B^{\prime}}B$ . (2) Let $\{\overline{T}\}$ be the set of all G-invariant inter-
mediate rings of $A/A^{\prime}$ , and $\{T\}$ the set of all intermediate rings of $B/B^{\prime}$ such
that $A^{\prime}T=TA^{\prime}$ . Then, $\overline{T}\rightarrow\overline{T}\cap B$ and $T\rightarrow A^{\prime}T=TA^{\prime}$ are mutually converse
order isomorphisms between $\{\overline{T}\}$ and $\{T\}$ , and $\overline{T}/(\overline{T}\cap B)$ is a G-Galois
extension (Th. 5. 1).

Let $A/B$ be a G-Galois extension, $V_{A}(B)=C$, and $B_{B}$ a direct summand
of $A_{B}$ . Then there hold the following: (1) $G$ coincides with the set of all
B-automorphisms of $A$ (Th. 4.2). (2) For any subgroup $H$ of $G,$ {$\sigma\in G$ ;
$\sigma|A^{H}=1_{A}^{\rho}\}=H$ (3) If $T$ is an intermediate ring of $A/B$, the following are


