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1. Introduction and results.

We mean by an almost contact structure of a real orientable differentiable
manifold $M^{2n+1}$ a reduction of the structural group $SO(2n+1)$ of the tangent
bundle $\tau(M)$ to $U(n)\times 1$ . (Cf. J. W. Gray [2] and S. Sasaki [6].) If $M$ has
the almost contact structure, we say also that $M$ is almost contact. Gray
has proved that a 5-dimensional real orientable manifold is almost contact if
and only if its third integral Stiefel-Whitney class is zero. The almost contact
structure is a quite analogous to an almost complex structure. Passing to
stable class of the tangent bundle both determine a stable complex structure.
Recently, the study of stable complex structures of real vector bundles to find
almost complex structures of even dimensional orientable differentiable mani-
folds is advanced by E. Thomas [10] and W. A. Sutherland [8] and others.
In this note, we deduce some results on the existence of almost contact
structures using their results. Our main theorem is,

Theorem 1. 1. Let $M$ be a real orientable differentiable manifold of
odd dimension. The tangent bundle $\tau(M)$ has a stable complex stmcture
$\iota f$ and only if $M$ is almost contact.

This theorem is proved by considering an induced map of Postnikov
systems for fibre maps between classifying spaces. Our technique follows
D. W. Kahn [4]. Let $w_{i}$ denote the i-th Stiefel-Whitney class and $\delta$ the
Bockstein coboundary operator associated with the exact sequence $ Z\rightarrow Z\rightarrow$

$Z_{2}\rightarrow 0$ . Let a be a point of $M$. If $M-a$ has an almost contact structure
then we say that $M$ has an almost contact structure except a point. As
applications of Theorem 1. 1, we obtain the following:

Theorem 1. 2. Let $M$ denote a closed real orientable differentiable
manifold of dimension 9 such that $w_{4}(M)=0$ . Then $M$ has an almost
contact stracture except a point if and only $\iota\beta$


