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\S .1 Introduction

We are concerned with the Cauchy problem for the following first order
equation

(1. 1) \partial_{t}u=\sum_{j=1}^{l}A_{j}(x, t)\partial_{x}u+B(x, t)u+f ,

where x=(X_{1}^{ },\cdots, X_{l})\in R^{l} , t\in R;u(x, t)=^{t}(u_{1}(x, t), \cdots , u_{m}(x, t)) , and A_{j}(1\leqq

j\leqq l) and B are matrices of order m. All the coefficients are assumed to be
real analytic in x and continuous in t .

The Cauchy-Kowalewsky theorem, more precisely the NagumO-Ovcianni-
kov theorem asserts that, given any real analytic initial data \varphi(x)\in C^{\omega}(\mathscr{Q}_{x})

and f(x, t)\in C_{t}^{0}(C^{\omega}(\mathscr{Q}_{x})) (continuous function of t with values in C^{\omega}(\mathscr{Q}_{x})),
where \mathscr{Q}_{x}(\subset R^{l}) is an open connected neighborhood of the origin.

We are concerned with the existence domain of u. Let f=0. Then its
domain may depend on the initial data \varphi , more precisely on its radius of
convergence around the origin. However, the Bony-Schapira theorem
asserts that, when A_{j} and B are analytic in (x, t) , and if the characteristic
roots \lambda_{i}(x, t;\xi) of

(1. 2) det ( \lambda I-\sum_{j}A_{j}(x, t)\xi_{f})=0

are all real, then there exists a neighborhood of the origin, say V, such
that for any \varphi(x)\in C^{\omega}(\mathscr{Q}_{x}) , there exists a unique solution u(x, t)\in C^{\omega}(V) .
It is plausible that this result can be extended to the actual situation. Our
aim is to show that

THEOREM 1. If there exists a common existence domain V of the
solution u(x, t) for any real analytic initial data \varphi(x)\in C^{\omega}(\mathscr{Q}_{x}) , then the
characterustuc roots \lambda_{i}(x, 0;\xi)(1\leqq i\leqq m) should be real.

In \S . 6, we shall explain what becomes Theorem 1 in the case of the
class s of Gevrey (1<s<+\infty) . Concerning this subject, there are two


