On the hyperbolicity in the domain of real analytic functions and Gevrey classes

By Sigeru MIZOHATA

(Received November 8, 1982)

§.1 Introduction

We are concerned with the Cauchy problem for the following first order equation

(1.1)
$$\partial_t u = \sum_{j=1}^l A_j(x,t) \,\partial_x u + B(x,t) \,u + f,$$

where $x=(x_1, \dots, x_l) \in \mathbb{R}^l$, $t \in \mathbb{R}$; $u(x, t) = {}^t(u_1(x, t), \dots, u_m(x, t))$, and $A_j(1 \le j \le l)$ and B are matrices of order m. All the coefficients are assumed to be real analytic in x and continuous in t.

The Cauchy-Kowalewsky theorem, more precisely the Nagumo-Ovciannikov theorem asserts that, given any real analytic initial data $\varphi(x) \in C^{\bullet}(\mathcal{O}_x)$ and $f(x,t) \in C_t^0(C^{\bullet}(\mathcal{O}_x))$ (continuous function of t with values in $C^{\bullet}(\mathcal{O}_x)$), where $\mathcal{O}_x(\subset \mathbb{R}^l)$ is an open connected neighborhood of the origin.

We are concerned with the existence domain of u. Let f=0. Then its domain may depend on the initial data φ , more precisely on its radius of convergence around the origin. However, the Bony-Schapira theorem asserts that, when A_j and B are analytic in (x, t), and if the characteristic roots $\lambda_i(x, t; \xi)$ of

(1.2)
$$\det\left(\lambda I - \sum_{j} A_{j}(x, t) \xi_{j}\right) = 0$$

are all real, then there exists a neighborhood of the origin, say V, such that for any $\varphi(x) \in C^{\omega}(\mathcal{O}_x)$, there exists a unique solution $u(x, t) \in C^{\omega}(V)$. It is plausible that this result can be extended to the actual situation. Our aim is to show that

THEOREM 1. If there exists a common existence domain V of the solution u(x,t) for any real analytic initial data $\varphi(x) \in C^{\bullet}(\mathcal{O}_x)$, then the characterustuc roots $\lambda_i(x,0;\xi)$ $(1 \leq i \leq m)$ should be real.

In §.6, we shall explain what becomes Theorem 1 in the case of the class s of Gevrey $(1 \le s \le \infty)$. Concerning this subject, there are two