On some hypersurfaces satisfying $\mathbf{R}(\mathbf{X}, \mathbf{Y}) \cdot \mathbf{R}_{\mathbf{1}}=\mathbf{0}$

Dedicated to Professor Yoshie Katsurada on her sixtieth birthday

By Kouei Sekigawa

1. Introduction.

The Riemannian curvature tensor R of a locally symmetric Riemannian manifold (M, g) satisfies

$$
\begin{equation*}
R(X, Y) \cdot R=0 \quad \text { for all tangent vectors } X \text { and } Y \tag{*}
\end{equation*}
$$

where the endomorphism $R(X, Y)$ operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition (*) on the curvature tensor field R imply that $\nabla R=0$? K. Nomizu conjectured that the answer is positive in the case where (M, g) is complete, irreducible and $\operatorname{dim} M \geqq 3$. But, recently, H. Takagi [5] gave an example of 3-dimensional complete, irreducible Riemannian manifold (M, g) satisfying $\left.{ }^{*}\right)$ and $\nabla R \neq 0$. Moreover, the present author proved that, in an $(m+1)$ dimensional Euclidean space $E^{m+1}(m \geqq 3)$, there exist some complete, irreducible hypersurfaces which satisfy the condition $\left(^{*}\right)$ and $\nabla R \neq 0$. For example,

$$
\begin{align*}
M ; & x_{m+1}= & \left(x_{1}-x_{2}\right)^{2} x_{2}+\left(x_{1}-x_{2}\right) x_{3} & \tag{1.1}\\
& +\sum_{a=1}^{m-3} x_{a+3} e^{\tau\left(x_{1}-x_{2}\right)} & & m \geqq 4, \\
& & & \tag{1.2}\\
M ; & x_{4}=\left(x_{1}-x_{2}\right)^{2} x_{2}+\left(x_{1}-x_{2}\right) x_{3}, & & \text { (See [3]), } \\
M ; & x_{4}=\frac{x_{1}^{2} x_{3}-x_{2}^{2} x_{3}-2 x_{1} x_{2}}{2\left(1+x_{3}^{2}\right)}, & & \text { (See [5]), } \tag{1.3}
\end{align*}
$$

where ($x_{1}, x_{2}, \cdots, x_{m+1}$) denotes a canonical coordinate system on E^{m+1}.
By these examples, we see that K. Nomizu's conjecture is negative. For theses examples, we see that the type number $k(x)$ is at most 2 for each point $x \in M$ and actually 2 at some point of M. In [2], K. Nomizu proved

Theorem A. Let (M, g) be an m-dimensional complete Riemannian manifold which is isometrically immersed in E^{m+1} so that the type number $k(x) \geqq 3$ at least at one point $x \in M$. If (M, g) satisfies the condition (*), then it is of the form $S^{k} \times E^{m-k}$, where S^{k} is a hypersphere in a Euclidean subspace E^{k+1} of E^{m+1} and E^{m-k} is a Euclidean subspace orthogonal to E^{k+1}.

