Sufficient conditions for an almost-Hermitian manifold to be Kählerian

Dedicated to Professor Y. Katsurada on her 60th birthday

By Sumio SAWAKI

§0. Introduction

If an almost-Hermitian manifold M is a Kählerian manifold, then its curvature tensor R satisfies

(*) $R(X, Y) \cdot F = 0$ for all tangent vectors X and Y,

where the endomorphism R(X, Y) operates on the almost-complex structure tensor F as a derivation at each point on M.

Conversely, does this algebraic condition (*) on the almost-complex structure tensor field F imply that M is a Kählerian manifold? For an almost-Kählerian manifold or a K-space, Kotō and the present author (Sawaki and Kotō [3]) already showed that the answer is affirmative, that is,

THEOREM A. If an almost-Kählerian manifold or a K-space M satisfies $S=S^*$, then M is Kählerian, where S is the scalar curvature and $S^*=\frac{1}{2}$ $F^{ab}R_{abt}{}^cF_c^t$.

In this theorem, the condition $S=S^*$ is weaker than $R(X, Y) \cdot F=0$, in fact, $R(X, Y) \cdot F=0$ implies $S=S^*$.

This problem for an almost-Kählerian manifold has also been studied recently by Goldberg [1] and under some additional conditions the present author [4] has proved the following

THEOREM B. If an almost-Hermitian manifold M satisfies

(i) $R(X, Y) \cdot F = 0$, $R(X, Y) \cdot \nabla F = 0$ for all tangent vectors X and Y,

(ii) $V_{[j}S_{i]h} = 0$ (or equivalently $V_i R^{t}_{jih} = 0$),

(iii) the Ricci form is definite,

then M is Kählerian.

THEOREM C. If a compact Hermitian manifold M satisfies

(i) $R(X, Y) \cdot F = 0$, $R(X, Y) \cdot \Omega = 0$ for all tangent vectors X and $Y^{(1)}$

1) In the sequel, we omit "for all tangent vectors X and Y".