Riemannian manifolds admitting more than n-1linearly independent solutions of $\nabla^2 \rho + c^2 \rho g = 0$

Dedicated to Prof. Yoshie Katsurada on the occassion of her sixtieth birthday

By Kwoichi TANDAI

Let M be a connected C^{∞} -Riemannian manifold of $n (\geq 2)$ dimensions with Riemannian metric g. Let us consider the system of partial differential equations

(1) $\nabla_{j}\nabla_{i}\rho + c^{2}\rho g_{ji} = 0 \qquad (c>0)$

on M, where V_i denote the local components of the covariant derivative with respect to the Riemannian connection associated to g $(i, j, k, \dots = 1, 2, \dots, n)$.

In a complete Riemannian manifold the existence of a non-trivial solution of (1) uniquely determines the Riemannian manifold structure up to an isometry. In fact, the following theorem is well known.

THEOREM A (Obata [1], [2], [3]). Let M be complete. In order for M to admit a non-trivial solution of (1), it is necessary and sufficient that M be isometric to a sphere $S^n\left(\frac{1}{c}\right)$ of radius $\frac{1}{c}$ in the (n+1)-dimensional Euclidean space E^{n+1} .

In the present paper we shall deal with Riemannian manifolds, admitting more than n-1 linearly independent solutions of (1), instead of the assumption of completeness, and prove the following three theorems.

THEOREM B. In order for M to admit n+1 solutions of (1), linearly independent over the real number field R, it is necessary and sufficient that M be isometrically immersed in $S^n\left(\frac{1}{c}\right)$ in E^{n+1} .

THEOREM C. Let M be simply connected. In order for M to admit n solutions of (1), linearly independent over R, it is necessary and sufficient that M be isometrically immersed in $S^n\left(\frac{1}{c}\right)$ in E^{n+1} .

THEOREM D. If M admit n-1 solutions of (1), linearly independent over R, M is of constant curvature c^2 .

The rest of the present paper is devoted itself to the proofs of these three theorems.