Some topological properties of certain Riemannian manifolds with positive curvature

By Toshio Sakaguchi

Introduction.

Let M be a compact and simply connected Riemannian manifold with positive curvature $K, 0<K \leqq 1$. Denote by $d(p, q)$ the distance between two points p and q of M. K. Hatsuse has introduced the following number $L(M)$;

$$
L(M)=\operatorname{Max}_{p, q, r \in M}\{d(p, q)+d(q, r)+d(r, p)\} .
$$

Actually it is possible to define $L(M)$ for any compact and connected Riemannian manifold with positive curvature. It has been studied by K. Hatsuse and Y. Tsukamoto [4],* [5] to investigate the topological structure of M satisfying suitable conditions for $L(M)$. In particular, K. Hatsuse has proved the following theorem.

Theorem. Let M be a compact and simply connected Riemannian manifold with positive curvature $K, 0<K \leqq 1$. If $L(M)<3 \pi$, then M is homeomorphic to a sphere. In particular, if $L(M)=2 \pi$, then M is isometric to the sphere with constant curvature 1 .

The purpose of the present paper is to prove the following theorems.
Theorem A. Let M be a compact and connected Riemannian manifold with positive curvature $K, 0<K \leqq 1$. If $L(M)=2 \pi$ and there exist two points p and q of M satisfying $d(p, q)=\pi$, then M is isometric to the sphere with constant curvature 1 .

Theorem B. Let M be an n-dimensional ($n \geqq 2$) compact and connected Riemannian manifold which is not simply connected. Suppose that the sectional curvature K of M satisfies the inequalities $1 / 4<\delta \leqq K \leqq 1$, where $\boldsymbol{\delta}$ is a constant, and the fundamental group $\pi_{1}(M)$ of M satisfies $\pi_{1}(M)=Z_{2}$. If $L(M)=3 \pi / 2$, then M is isometric to the real projective space $P R^{n}(1)$ of constant curvature 1 , and if $L(M)=3 \pi / 2 \sqrt{\delta}$, then M is isometric to $P R^{n}(\boldsymbol{\delta})$ of constant curvature δ.
$\S 1$ will be of reviews of definitions and notations and $\S 2$ will be devoted

[^0]
[^0]: * Numbers in brackets refer to the references at the end of the paper.

