A note on homotopy spheres

By Yoshifumi Ando

§ 0. Introduction

All manifolds will mean compact oriented smooth manifolds without any further notices. In [5] J. Milnor and M. Kervaire has determined $b P_{m}$, the group of homotopy spheres which bound parallelizable manifolds. If $m=$ $4 k(k \neq 1)$, then $b P_{4 k}$ is the cyclic group of order $\sigma_{k} / 8$. In this paper we will consider the group of homotopy spheres which bound manifolds of dim m, whose Spivk normal fiber spaces are trivial. We denote it by $b F_{m}$. We show that there exists an analogy of the above fact for $b F_{m}$. We define $b F_{m}^{0}$ to be the group of homotopy spheres which bound manifolds of dim m whose Spivak normal fiber spaces are trivial and whose indexes are zero. Then $b F_{m}^{0}$ is a subgroup of $b F_{n c}$. Let f_{k} be $1 / 8 \mathrm{~min}\{n \in \boldsymbol{Z} \mid n$ is the index of a closed manifold of dim $4 k$ whose Spivak normal fiber space is trivial. $n>0\}$. Then we have

Theorem 0. 1 i) If $m \geq 6$, then $b F_{m}=b P_{m}$. ii) If $m=4 k$, then the group $b F_{m} / b F_{m}^{0}$ is isomorphic to a cyclic group of order f_{k}.

Theorem 0. 2 Let $d_{2 n}$ be the greatest common divisor of $2^{4 n-2}\left(2^{4 n-1}-1\right)$ numerator $\left(B_{m} / 4 m\right)$ and $2\left\{2^{2 n-1} \cdot\left(2^{2 n-1}-1\right) \cdot a_{n} \cdot \text { numerator }\left(\frac{B_{n}}{4 n}\right)\right\}^{2}$. Then $f_{2 n}$ $\leqq d_{2 n}$. Especially if $k=1$, then $f_{2}=4$ which is equivalent to $b F_{8}^{0} \cong \boldsymbol{Z}_{7}$.
$\S 1$ is devoted to preliminaries. Theorem 0.1 will be proved in $\S 2$. In $\S 3$ we will give some computations and a proof of Theorem 0.2.

§ 1. Preliminaries

We quote some results due to D. Sullivan [8]. Let $F / 0$ be the fiber of the map, $B S O \rightarrow B S F$. Let W be a simply connected manifold with a boundary $\partial W^{\top} \neq \phi$. Let $h S(W)$ denote the concordance classes of h-smoothings h : $\left(W^{\prime}, \partial W^{\prime}\right) \rightarrow(W, \partial W)$ of W.
(1.1) If $\operatorname{dim} W \geqq 6$, then there is a bijection $\eta, h S(W) \rightarrow[W, F / 0]$. Moreover if a h-smoothing, $h:\left(W^{\prime}, \partial W^{\prime}\right) \rightarrow(W, \partial W)$ corresponds to $f: W \rightarrow$ $F / 0$ by η, then the stable tangent bundle $\tau_{w^{\prime}}$ of W^{\prime} is equivalent to $h^{*} \tau_{w} \oplus$ $h^{*} f^{*}(\gamma)$, where γ is a universal $F / 0$-bundle [8, 9].

If ∂W is a homotopy sphere of $\operatorname{dim} \partial W=m-1$, let a map $\bar{d} ; h S(W) \rightarrow$ θ_{m-1} be defined as follows. θ_{m-1} denotes the group of homotopy spheres of

