A note on homotopy spheres

By Yoshifumi ANDO

§0. Introduction

All manifolds will mean compact oriented smooth manifolds without any further notices. In [5] J. Milnor and M. Kervaire has determined bP_m , the group of homotopy spheres which bound parallelizable manifolds. If m = $4k \ (k \neq 1)$, then bP_{4k} is the cyclic group of order $\sigma_k/8$. In this paper we will consider the group of homotopy spheres which bound manifolds of dim m, whose Spivk normal fiber spaces are trivial. We denote it by bF_m . We show that there exists an analogy of the above fact for bF_m . We define bF_m^0 to be the group of homotopy spheres which bound manifolds of dim m whose Spivak normal fiber spaces are trivial and whose indexes are zero. Then bF_m^0 is a subgroup of bF_m . Let f_k be $1/8 \min \{n \in \mathbb{Z} \mid n \text{ is the index}$ of a closed manifold of dim 4k whose Spivak normal fiber space is trivial. n > 0}. Then we have

THEOREM 0. 1 i) If $m \ge 6$, then $bF_m = bP_m$. ii) If m = 4k, then the group bF_m/bF_m^0 is isomorphic to a cyclic group of order f_k .

THEOREM 0. 2 Let d_{2n} be the greatest common divisor of $2^{4n-2}(2^{4n-1}-1)$ numerator $(B_m/4m)$ and $2\left\{2^{2n-1}\cdot(2^{2n-1}-1)\cdot a_n\cdot numerator\left(\frac{B_n}{4n}\right)\right\}^2$. Then $f_{2n} \leq d_{2n}$. Especially if k=1, then $f_2=4$ which is equivalent to $bF_8^0 \cong \mathbb{Z}_7$.

\$1 is devoted to preliminaries. Theorem 0.1 will be proved in \$2. In \$3 we will give some computations and a proof of Theorem 0.2.

§1. Preliminaries

We quote some results due to D. Sullivan [8]. Let F/0 be the fiber of the map, $BSO \rightarrow BSF$. Let W be a simply connected manifold with a boundary $\partial W \neq \phi$. Let hS(W) denote the concordance classes of h-smoothings $h: (W', \partial W') \rightarrow (W, \partial W)$ of W.

(1.1) If dim $W \ge 6$, then there is a bijection η , $hS(W) \rightarrow [W, F/0]$. Moreover if a *h*-smoothing, $h: (W', \partial W') \rightarrow (W, \partial W)$ corresponds to $f: W \rightarrow F/0$ by η , then the stable tangent bundle $\tau_{w'}$ of W' is equivalent to $h^*\tau_w \oplus h^*f^*(r)$, where r is a universal F/0-bundle [8, 9].

If ∂W is a homotopy sphere of dim $\partial W = m-1$, let a map \vec{d} ; $hS(W) \rightarrow \theta_{m-1}$ be defined as follows. θ_{m-1} denotes the group of homotopy spheres of