On minimal points of Riemann surfaces, II.

By Zenjiro KURAMOCHI

Dedicated to Prof. Yukinari Tôki on his 60th birthday

This paper is the continuation of the paper with the same title [1]. Definitions and terminologies in the previous paper will be used here also. Let R be a Riemann surface with positive boundary and let G be a domain in R. We suppose Martin's topologies M and M' are defined over $R + \Delta(R, M)$ and $G + \Delta(G,M')$, where $\Delta(R, M)$ and $\Delta(G, M')$ are sets of all Martin's boundary points of R and G respectively. Let $\Delta(R, M)$ (resp. $\Delta(G, M')$) be the set of all minimal points of $\Delta(R, M)$ (resp. $\Delta(G, M')$). Let G(z, p) and G'(z, p) be Green's functions of R and G respectively and let p^* be a fixed point in G. Put $G_{\delta} = \left\{ z \in G : \frac{G'(z, p^*)}{G(z, p^*)} > \delta \right\}$. Then

THEOREM 1. (M. Brelot) [2]. Let p be a point on ∂G . If p is irregular for the Dirichlet problem in G, the set of points in $\Delta(G, M')$ lying on pconsists of only one point which is minimal.

THEOREM 2. (M. Brelot) [3]. Let $p \in \mathcal{A}(R, M)$. Then there exists a path Γ in R M-tending to p.

THEOREM 3. (L. Naïm) [4]. Let $\{p_i\}$ be a sequence in $G_{\delta}: \delta > 0$ such that $M = p_i \longrightarrow p \in A(R, M)$. Then $\{p_i\}$ M'-tends to a point $q \in A(G, M')$.

We shall consider extensions of the above theorems. In this paper we use I and E operations. Let A and B be two hyperbolic domains in R such that $A \subset B$. Let U(z) be a positive harmonic function in B. We denote by $\prod_{A}^{B}[U(z)]$ the upper envelope of continuous subharmonic functions in A smaller than U(z) and vanishing on ∂A except a set of capacity zero. Let V(z) be a positive harmonic function in A vanishing on ∂A except a set of capacity zero. We denote by $\sum_{A}^{B}[V(z)]$ the lower envelope of continuous superharmonic functions larger than V(z). Then I and E have following properties:

- 1). E and I are positive linear operators.
- 2). I E[V(z)] = V(z).
- 3). If U(z) is minimal in G and I[U(z)] > 0, EI[U(z)] = U(z).