On almost complex structures on the products and connected sums of 'the quaternion projective spaces

By Inaho SATO and Haruo SUZUKI

Introduction and results

It is known by F. Hirzebruch [3] and by T. Heaps [2]*) that the quaternion projective space $P_n(Q)$ of quaternion dimension n has no almost complex structure for $n \neq 3$.

In this note, we consider whether almost complex structures exist or not on the product spaces $P_{n_1}(Q) \times \cdots \times P_{n_r}(Q)$ of quaternion projective spaces, and the connected sums

$$\begin{split} \alpha P_n(Q) \sharp \left(-\beta P_n(Q) \right) \\ &= \underbrace{P_n(Q) \sharp \cdots \sharp P_n(Q)}_{\alpha \text{ copies}} \sharp \left(\underbrace{-P_n(Q)) \sharp \cdots \sharp (-P_n(Q))}_{\beta \text{ copies}} \right), \end{split}$$

where the sign-denotes the reversed orientation.

THEOREM A. The product spaces $P_{n_1}(Q) \times \cdots \times P_{n_r}(Q)$ for $r \ge 2$ admit no almost complex structures if $n_i \ne 2$, 3 for an integer i, $1 \le i \le r$.

THEOREM B. The connected sums

$$\alpha P_n(Q) \# (-\beta P_n(Q)), \quad \text{where } n \leq 10,$$

admit no almost complex structures if $n=1, 2, 4, 5, \dots, 10$ or $n=3, \alpha \neq 3\beta+1$.

2. The product spaces $P_{n_1}(Q) \times \cdots \times P_{n_r}(Q)$.

Let $P_n(Q)$ be the quaternion projective space of quaternion dimension n. Let $p_i \in H^{4i}(P_n(Q); Z)$ be the ith Pontrjagin class. Let $c_i \in H^{2i}(P_n(Q); Z)$ be the ith Chern class if $P_n(Q)$ has an almost complex structure. Let $u \in H^4(P_n(Q); Z)$ be the canonical generator. By F. Hirzebruch [3] or A. Borel and F. Hirzebruch [1], we have the total Pontrjagin class of $P_n(Q)$,

$$p = \sum_{i=0}^{\infty} p_i = (1+u)^{2n+2}(1+4u)^{-1}.$$

^{*)} The authors thank M. Adachi for his advice on the Heaps' theorm.