# Some congruence theorems for closed hypersurfaces in Riemann spaces <br> (The continuation of Part III) 

Dedicated to the memory of Professor Dr. Heinz Hopf

By Yoshie Katsurada

Introduction. This is the continuation of the previous paper ([1] $)^{1)}$ given by H . Hopf and the present author. In [1], considering an ( $m+1$ )dimensional orientable Riemann space $S^{m+1}$ with constant curvature of class $C^{\nu}(\nu \geqq 3)$ which admits a one-parameter group $G$ of isometric transformations, we proved the following

Theorem. Let $W^{m}$ and $\bar{W}^{m}$ be two orientable closed hypersurfaces in $S^{m+1}$ which do not contain a piece of a hypersurface covered by the orbits of the transformations and $p \bar{p}$ be the corresponding points of these hypersurfaces along an orbit, and $H_{r}(p)$ and $\bar{H}_{r}(p), r=1, \cdots, m$ be the $r$-th mean curvatures of these hypersurfaces at $p$ and $\overline{\bar{p}}$ respectively. Assume that in case $r \geqq 2$, the second fundamental form of $W^{m}(t) \stackrel{\text { def. }}{=}(1-t) W^{m}+t \bar{W}^{m}, 0 \leqq t \leqq 1$, is positive definite. If the relation $H_{r}(p)=\bar{H}_{r}(p)$ holds for each point $p \in W^{m}$, then $W^{m}$ and $\bar{W}^{m}$ are congruent $\bmod G$.

In the present paper, we shall cancel the assumption that the transformations are isometric, in fact, under a group $G$ of essentially arbitrary transformations it is the purpose of the present paper to generalize the above theorem. Especially, in case of $r=m$, that is, the general theorem relating to the Gauss curvature was already proved in the previous paper [2].
§ 1. A certain integral form for two closed hypersurfaces. We suppose an $(m+1)$-dimensional orientable Riemann space $S^{m+1}$ with constant curvature of class $C^{\nu}(\nu \geqq 3)$ which admits an infinitesimal transformation

$$
\begin{equation*}
\hat{x}^{i}=x^{i}+\xi^{i}(x) \delta \tau \tag{1.1}
\end{equation*}
$$

(where $x^{i}$ are local coordinates in $S^{m+1}$ and $\xi^{i}$ are the components of a contravariant vector $\xi$ ). We assume that orbits of the transformations generated by $\xi$ cover $S^{m+1}$ simply and that $\xi$ is everywhere continuous and $\neq 0$. Let us choose a coordinate system such that the orbits of transfor-

[^0]
[^0]:    1) Numbers in brackets refer to the references at the end of the paper.
