3-dimensional Riemannian manifolds satisfying

$$
\boldsymbol{R}(X, \boldsymbol{Y}) \cdot \boldsymbol{R}=\mathbf{0}
$$

By Shûkichi Tanno

§ 1. Introduction

Let (M, g) be a Riemannian manifold with a positive definite metric tensor g. By R we denote the Riemannian curvature tensor. By M_{p} we denote the tangent space to M at p. Let $X, Y \in M_{p}$. Then $R(X, Y)$ operates on the tensor algebra as a derivation at each point p. In a locally symmetric space (i. e., $\nabla R=0$), we have $R(X, Y) \cdot R=0$. We consider the converse under some additional conditions.

Theorem. Let (M, g) be a complete and irreducible 3-dimensional Riemannian manifold. Assume that the scalar curvature S is positive and bounded away from zero (i.e., $S \geq \varepsilon>0$ for some constant ε). If (M, g) satisfies
(*) $R(X, Y) \cdot R=0$ for any $p \in M$ and $X, Y \in M_{p}$, then (M, g) is of positive constant curvature.

This theorem follows from the following
Proposition. Let (M, g) be a complete 3-dimensional Riemannian manifold satisfying $\left(^{*}\right)$. Assume that S is positive and bounded away from zero. Then (M, g) is either
(1) a space of positive constant curvature, or
(2) locally a product Riemannian manifold of a 2-dimensional space of positive curvature and a real line.

A consequence of Theorem is as follows:
Corollary. Let (M, g) be a compact and irreducible 3-dimensional Riemannian manifold. If (M, g) satisfies $\left({ }^{*}\right)$ and S is positive, then (M, g) is of positive constant curvature.

In Theorem the condition on the scalar curvature or something like this is necessary, because of Takagi's example [6].

It may be noticed that $\left.{ }^{*}\right)$ is equivalent to $R(X, Y) \cdot R_{1}=0$, where R_{1} denotes the Ricci curvature tensor. In this paper (M, g) is assumed to be connected and of class C^{∞}.

§ 2. Preliminaries

Let (M, g) be a 3-dimensional Riemannian manifold and assume (*) on

