A conformal transformation and a special concircular scalar field in a Riemannian manifold

By Minoru Isu¹⁾

Introduction

Recently T. Koyanagi $[1]^{2}$ has investigated some properties of a Riemannian manifold which admits a scalar field ρ characterized by the property

$$(0.1) \qquad \qquad \nabla_{l} \rho_{k} = \sigma \rho g_{kl}, \qquad \sigma = non-zero \ constant ,$$

(such a scalar field ρ is called the special concircular scalar field) where $\rho_k = \nabla_k \rho$ and g_{kl} means the metric tensor of the manifold. He obtained the following

THEOREM A. Let M be a Riemannian manifold of dimension n which has the curvature tensor satisfying

$$\nabla_{[m}\nabla_{l]}R_{hijk}=0$$

and admits the special concircular scalar field ρ defined by (0.1). Then M is of constant curvature.

COROLLARY A₁. Let M be an n-dimensional Einstein space (n>2) which has the scalar curvature $R\neq 0$, the curvature tensor such that

$$\nabla_{[m}\nabla_{l]}R_{hijk}=0$$

and admits a proper conformal Killing vector field ξ^i . Then M is of constant curvature.

THEOREM B. Let M be a Riemannian manifold of dimension n which has the Ricci tensor such that

$$\nabla_{[i}\nabla_{h]}R_{jk}=0$$

and admits the special concircular scalar field ρ . Then M is an Einstein space.

A conformal Killing vector field ξ^i satisfies an equation;

$$\mathcal{L}_{\xi} g_{ij} = \overline{V}_{j} \xi_{i} + \overline{V}_{i} \xi_{j} = 2 \rho g_{ij},$$

2) Numbers in brackets refer to the references at the end of the paper.

¹⁾ The work of this author was partially supported by the Ministry of Education.