On a certain subspace of the Riemannian projective recurrent space

By Toshikiyo Yamada

§ 0. Introduction

Riemannian spaces which admit some recurrent tensors have been studied by many authors. Recently, T. Miyazawa and Gorō Chūman [1] have studied the subspaces of a Riemannian recurrent space. In this paper, we would like to further study the subspaces of the Riemannian projective recurrent spaces.

The Riemannian space V_{m} may be called a projective recurrent space if Weyl's projective curvature tensor

$$
\begin{equation*}
P_{k j i}{ }^{n}=\bar{R}_{k j i}{ }^{n}-\frac{1}{m-1}\left(\bar{R}_{j i} \delta_{k}{ }^{n}-\bar{R}_{k i} \delta_{j}{ }^{h}\right) \tag{0.1}
\end{equation*}
$$

satisfies the relation

$$
\begin{equation*}
\nabla_{l} P_{k j i}{ }^{h}=K_{l} P_{k j j^{h}}{ }^{h}, \tag{0.2}
\end{equation*}
$$

where ∇_{l} denotes a covariant differentiation with respect to the metric tensor $g_{i j}$ of the V_{m}. We will call K_{l} in (0.2) the vector of recurrence of the space.

The present author wishes to express here his sincere thanks to Professor Yoshie Katsurada and Doctor Tamao Nagai for their kindly guidance and encouragement.

§ 1. Preliminary

Let us consider an n-dimensional subspace V_{n}, of local coordinate y^{a}, immersed in an m-dimensional Riemannian space V_{m} of local coordinate x^{i}. Let $B_{a}{ }^{i}=\partial x^{i} / \partial y_{a}$, then the rank of the matrix $\left(B_{a}{ }^{i}\right)$ is n, where the indices h, i, j, \cdots, take the values $1, \cdots, m$ and the indices a, b, c, \cdots, the values $1, \cdots, n(m>n)$. We have the components $g_{a b}$ of the fundamental tensor for V_{n} given by the relation $g_{a b}=B_{a}{ }^{i} B_{b}{ }^{j} g_{i j}, g_{i j}$ being the components of the fundamental tensor for V_{m}.

Let $N_{P}(P=n+1, \cdots, m)$ be unit normals to the V_{m} and mutually orthogonal, then we have the relations

$$
\begin{equation*}
g_{i j} N_{P}^{i} N_{P}^{i}=e_{P}, \quad g_{i j} N_{P}^{i} N_{Q}{ }^{j}=0(P \neq Q), \quad g_{i j} B_{a}{ }^{i} N_{P}{ }^{j}=0, \tag{1.1}
\end{equation*}
$$

