Examples of the manifolds $f^{-1}(\mathbf{0}) \cap S^{2n+1}$, $f(Z) = Z_0^{a_0} + Z_1^{a_1} + \cdots + Z_n^{a_n}$

By Yoshifumi ANDO

Consider the polynomials $f(z) = Z_0^{a_0} + Z_1^{a_1} + \cdots + Z_n^{a_n}$, $a_i \ge 2, z_i \in C(i=0, 1, 2, \dots, n)$ and closed differentiable manifolds of dim (2n-1), $K_a = f^{-1}(0) \cap S^{2n+1}$, where S^{2n+1} denotes the unit sphere in C^{n+1} . The purpose of this paper is to give examples which shows what manifolds K_a are when $(a_0, a_1, \cdots, a_n) = (2, 2, \dots, 2, p, q)$, $q \equiv 0(p)$ and $n \ge 3$. This paper is a continuation of [1], so we will use the same notations as them in [1]. Let $q \equiv 0(p)$ be satisfied. Then $K_{a'}$, $a' = (2, 2, \dots, 2, p, q-1)$ is a homotopy sphere which is denoted by Σ in the sequel if and only if n is odd or both p and q-1 are odd in case of n being even. This is an easy consequence of [3, §14]. In the sequel we assume that a and a' are as stated above. Unless otherwise stated, a manifold means a smooth manifold.

THEOREM 1. Let $n \ge 3$ and $q \equiv 0(p)$.

(i) If n is odd, then K_a is diffeomorphic to $(S^{n-1} \times S^n)_1 \# (S^{n-1} \times S^n)_2 \# \cdots \# (S^{n-1} \times S^n)_{p-1} \# \Sigma$ when p is odd or both p and q/p are even, and to $\partial D(\tau_{S^n})_1 \# \cdots \# \partial D(\tau_{S^n})_{p/2} \# (S^{n-1} \times S^n)_{p/2+1} \# \cdots \# (S^{n-1} \times S^n)_{p-1} \# \Sigma$ when p is even and q/p is odd.

(ii) If n is even, p=3, and $q\equiv 0(6)$, then K_a is diffeomorphic to $(S^{n-1} \times S^n) \# (S^{n-1} \times S^n) \# \Sigma$.

At first we consider the case when n is odd. Let F_a be a fiber of Milnor fibering associated to the polynomial f and \overline{F}_a the closure of F_a in

 S^{2n+1} [5]. Now we recall the exact esquence $0 \rightarrow H_n(K_a) \rightarrow H_n(\overline{F}_a) \rightarrow H_n(\overline{F}_a)$, $\overset{\partial}{\rightarrow} H_{n-1}(K_a) \rightarrow 0.$ [5]

To know the modules $H_n(K_a)$ and $H_{n-1}(K_a)$ we must examine the matrix

