Examples of the manifolds $f^{-1}(0) \cap S^{2 n+1}$,

$$
f(Z)=Z_{0}^{a_{0}}+Z_{1}^{a_{1}}+\cdots+Z_{n}^{a_{n}}
$$

By Yoshifumi Ando

Consider the polynomials $f(z)=Z_{0}^{a_{0}}+Z_{1}^{a_{1}}+\cdots+Z_{n}^{a_{n}}, a_{i} \geqq 2, z_{i} \in \boldsymbol{C}(i=0,1,2$, $\cdots, n)$ and closed differentiable manifolds of $\operatorname{dim}(2 n-1), K_{a}=f^{-1}(0) \cap S^{2 n+1}$, where $S^{2 n+1}$ denotes the unit sphere in \boldsymbol{C}^{n+1}. The purpose of this paper is to give examples which shows what manifolds K_{a} are when (a_{0}, a_{1}, \cdots, $\left.a_{n}\right)=(2,2, \cdots, 2, p, q), q \equiv 0(p)$ and $n \geqq 3$. This paper is a continuation of [1], so we will use the same notations as them in [1]. Let $q \equiv 0(p)$ be satisfied. Then $K_{a}, a^{\prime}=(2,2, \cdots, 2, p, q-1)$ is a homotopy sphere which is denoted by Σ in the sequel if and only if n is odd or both p and $q-1$ are odd in case of n being even. This is an easy consequence of $[3, \S 14]$. In the sequel we assume that a and a^{\prime} are as stated above. Unless otherwise stated, a manifold means a smooth manifold.

Theorem 1. Let $n \geqq 3$ and $q \equiv 0(p)$.
(i) If n is odd, then K_{a} is diffeomorphic to $\left(S^{n-1} \times S^{n}\right)_{1} \#\left(S^{n-1} \times S^{n}\right)_{2} \#$ $\cdots \#\left(S^{n-1} \times S^{n}\right)_{p-1} \# \Sigma$ when p is odd or both p and q / p are even, and to $\partial D\left(\tau_{\left.s^{n}\right)} \# \cdots \# \partial D\left(\tau_{s^{n}}\right)_{p / 2} \#\left(S^{n-1} \times S^{n}\right)_{p / 2+1} \# \cdots \#\left(S^{n-1} \times S^{n}\right)_{p-1} \# \Sigma\right.$ when p is even and q / p is odd.
(ii) If n is even, $p=3$, and $q \equiv 0(6)$, then K_{a} is diffeomorphic to (S^{n-1} $\left.\times S^{n}\right) \#\left(S^{n-1} \times S^{n}\right) \# \Sigma$.

At first we consider ths case when n is odd. Let F_{a} be a fiber of Milnor fibering associated to the polynomial f and \bar{F}_{a} the closure of F_{a} in $S^{2 n+1}$ [5]. Now we recall the exact esquence $0 \rightarrow H_{n}\left(K_{a}\right) \rightarrow H_{n}\left(\bar{F}_{a} \xrightarrow{\Psi} H_{n}\left(\bar{F}_{a}\right.\right.$, $K_{a} \stackrel{\partial}{\rightarrow} H_{n-1}\left(K_{a}\right) \rightarrow 0 .[5]$
To know the modules $H_{n}\left(K_{a}\right)$ and $H_{n-1}\left(K_{a}\right)$ we must examine the matrix

