By Yasuji TAKAHASHI

§1. Introduction

In [1], Dao-Xing has shown that the following:

THEOREM Let H be a separable Hilbert space, and let \mathfrak{F} be the totality of weak Borel sets in H. Let Φ be a linear subspace of H, and suppose that Φ itself is a complete σ -Hilbert space with respect to the sequence of inner products $(\varphi, \psi)_n$, $n=1, 2, 3, \cdots$

where $(\varphi, \varphi)_1 \leq (\varphi, \varphi)_2 \leq \cdots$.

Also, suppose that the inclusion mapping T from Φ into H is continuous. For each n, let Φ_n denote the completion of Φ with respect to the inner product $(\varphi, \phi)_n$. Then, the following conditions are equivalent.

(1) There exists a Φ -quasi-invariant finite measure (non-trivial) μ on (H, \mathfrak{F}) .

(2) There exists n such that the inclusion mapping T can be extended to a Hilbert-Schmidt operator from Φ_n into H.

In the Dao-Xing's original Theorem, it is necessary that μ is regular. In this paper, we shall show that this assumption can be taken off, furthermore this theorem can be extended to complete σ -normed spaces.

Throughout this paper (except for $\S 2.1^\circ$. and $\S 5.$), we shall assume that linear spaces are with real coefficients.

§2. Basic definitions and well known results

1°. p-absolutely summing operators $(1 \le p < \infty)$

Let E and F be Banach spaces.

DEFINITION 2.1.1. Let $\{x_n\}$ be a sequence from a Banach space E. $\{x_n\}$ is called scalarly l_p if for each continuous linear functional $x^* \in E^*$, we have the inequality

$$\sum_{n=1}^{\infty} |x^*(x_n)|^p < \infty$$
.

 $\{x_n\}$ is called absolutely l_p if $\sum_{n=1}^{\infty} ||x_n||^p < \infty$.

DEFINITION 2.1.2. A linear operator T from E into F is called p-

- 561.686 - 561.686