On a problem of D. G. Higman

By Tosiro Tsuzuku

Dedicated to Professor Kiiti Morita on his 60th birthday

In his paper [3], D. G. Higman gave a characterization of (projective) symplectic groups $PS_p(4, q)$ of dimension 4 over the field F_q ([3], Theorem 2) and proposed the similar characterization for higher dimensional case. In this note, we will give a characterization of higher dimensional symplectic groups by adopting Kantor's idea in [5].

For notation we follow that of Higman [3] mostly. Given a group G of permutations of a finite set Ω we denote by a^g the image of $a \in \Omega$ under $g \in G$, and by G_a the stabilizer of a, $G_a = \{g \in G | a^g = a\}$. For a subgroup H of G and a subset X of Ω we let $a^H = \{a^g | g \in H\}$, $X^g = \{a^g | a \in X\}$ and $G_x = \bigcap_{a \in X} G_a$. We call the number of orbits of G_a , $a \in \Omega$, the rank of G and we call the lengths of these orbits the subdegrees of G. Our theorem is the following.

THEOREM. Let G be a transitive rank 3 permutation group on a finite set Ω whose subdegrees are 1, $(q^{n-1}-q)/(q-1)$, q^{n-1} where q is a power of a prime number p and $n \ge 4$. Assume that there are at least q elements of G_a , $a \in \Omega$, fixing a G_a -orbit of length $(q^{n-1}-q)/(q-1)$ pointwise. Then n is even and G contains a normal subgroup isomorphic to the projective symplectic group $PS_p(n, q)$ which is generated by all the symplectic elations.

Proof. For $a \in \Omega$, we denote G_a -orbits by $\{a\}$, $\Delta(a)$, $\Gamma(a)$ with $\Delta(a)^g = \Delta(a^g)$, $\Gamma(a)^g = \Gamma(a^g) (g \in G)$ and $|\Delta(a)| = (q^{n-1}-q)/(q-1)$, $|\Gamma(a)| = q^{n-1}$. The intersection numbers λ , μ of G are defined by

$$|\varDelta(a) \cap \varDelta(b)| = \begin{cases} \lambda & \text{if } b \in \varDelta(a) \\ \mu & \text{if } b \in \Gamma(a) . \end{cases}$$

According to Lemma 5 in [3], we have

$$\mu q^{n-1} = \frac{q^{n-1}-q}{q-1} \left(\frac{q^{n-1}-q}{q-1} - \lambda - 1 \right).$$

Hence $\mu = 1 + q + \dots + q^{n-3}$ and $\lambda = -1 + q + \dots + q^{n-3}$. Thus, by Lemma 8 in [3], a block design \mathscr{D} whose points are the elements of Ω and whose blocks are the symbols b^{\perp} , one for each $b \in \Omega$, and whose incidence $a \in b^{\perp}$

281 M 201 30 3