On a problem of D. G. Higman

By Tosiro Tsuzuku

Dedicated to Professor Kiiti Morita on his 60th birthday

In his paper [3], D. G. Higman gave a characterization of (projective) symplectic groups $P S_{p}(4, q)$ of dimension 4 over the field F_{q} ([3], Theorem 2) and proposed the similar characterization for higher dimensional case. In this note, we will give a characterization of higher dimensional symplectic groups by adopting Kantor's idea in [5].

For notation we follow that of Higman [3] mostly. Given a group G of permutations of a finite set Ω we denote by a^{g} the image of $a \in \Omega$ under $g \in G$, and by G_{a} the stabilizer of $a, G_{a}=\left\{g \in G \mid a^{a}=a\right\}$. For a subgroup H of G and a subset X of Ω we let $a^{H}=\left\{a^{g} \mid g \in H\right\}, X^{g}=\left\{a^{g} \mid a \in X\right\}$ and $G_{x}=\bigcap_{a \in \mathbb{X}} G_{a}$. We call the number of orbits of $G_{a}, a \in \Omega$, the rank of G and we call the lengths of these orbits the subdegrees of G. Our theorem is the following.

Theorem. Let G be a transitive rank 3 permutation group on a finite set S whose subdegrees are $1,\left(q^{n-1}-q\right) /(q-1), q^{n-1}$ where q is a power of a prime number p and $n \geqq 4$. Assume that there are at least q elements of $G_{a}, a \in \Omega$, fixing $a G_{a}$-orbit of length $\left(q^{n-1}-q\right) /(q-1)$ pointwise. Then n is even and G contains a normal subgroup isomorphic to the projective symplectic group $P S_{p}(n, q)$ which is generated by all the symplectic elations.

Proof. For $a \in \Omega$, we denote G_{a}-orbits by $\{a\}, \Delta(a), \Gamma(a)$ with $\Delta(a)^{a}=$ $\Delta\left(a^{g}\right), \Gamma(a)^{\sigma}=\Gamma\left(a^{g}\right)(g \in G)$ and $|\Delta(a)|=\left(q^{n-1}-q\right) /(q-1),|\Gamma(a)|=q^{n-1}$. The intersection numbers λ, μ of G are defined by

$$
|\Delta(a) \cap \Delta(b)|= \begin{cases}\lambda & \text { if } b \in \Delta(a) \\ \mu & \text { if } b \in \Gamma(a) .\end{cases}
$$

Aecording to Lemma 5 in [3], we have

$$
\mu q^{n-1}=\frac{q^{n-1}-q}{q-1}\left(\frac{q^{n-1}-q}{q-1}-\lambda-1\right) .
$$

Hence $\mu=1+q+\cdots+q^{n-3}$ and $\lambda=-1+q+\cdots+q^{n-3}$. Thus, by Lemma 8 in [3], a block design \mathscr{Z} whose points are the elements of Ω and whose blocks are the symbols b^{\perp}, one for each $b \in \Omega$, and whose incidence $a \in b^{\perp}$

