A characterization of A_7 and M_{11} , III

Dedicated to Professor Kiiti Morita on his 60th birthday

By Hiroshi KIMURA

1. Introduction

In this paper we shall prove the following theorem.

THEOREM 1. Let G be a doubly transitive group on the set $\Omega = \{1, 2, \dots, n\}$. If the stabilizer $G_{1,2}$ of points 1 and 2 is isomorphic to the Janko's simple group J(11) of order $2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$ or a group R(q) of Ree type, then G has a regular normal subgroup.

By Walter's theorem a simple group with abelian Sylow 2-subgroups is isomorphic to J(11), $R(q)(q \neq 3)$, $PSL(2, 2^m)$ or PLS(2, q) with $q \equiv 3$ or 5 (mod 8). Theorefore by Theorem 1 and theorems in [7] we have the following.

Theorem 2. Let G be a doubly transitive group on the set $\Omega = \{1, 2, \dots, n\}$. If $G_{1,2}$ is isomorphic to a simple group with abelian Sylow 2-subgroups, then G is isomorphic to the alternating group A_7 of degree seven, the Mathieu group M_{11} of degree eleven or G has a regular normal subgroup.

Let X be a subset of a permutation group. Let F(X) denote the set of all fixed points of X and $\alpha(X)$ be the number of points in F(X). $N_{\alpha}(X)$ acts on F(X).

Let $\chi_1(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively. The other notation is standard.

2. Preliminaries

Let G be a doubly transitive group on Ω not containing a regular normal subgroup such that $G_{1,2}$ is isomorphic to J(11) or R(q). Let K be a Sylow 2-subgroup of $G_{1,2}$. Then K is an elementary abelian 2-group of order 8. Let I be an involution of G with the cycle structure $(1, 2) \cdots$. Then I normalizes $G_{1,2}$. Since $\operatorname{Aut}(G_{1,2})/\operatorname{Inn}(G_{1,2})$ is of odd order, we may assume I centralizes $G_{1,2}$. Let τ be an involution of K. Let τ fix i points of Ω , say $1, 2, \dots, i$. Since every involution of G is conjugate to an involution in $IG_{1,2}$, it is conjugate to I or $I\tau$.

Let d be the number of elements in $G_{1,2}$ inverted by I. Set $\mathcal{T} = [G_{1,2}: C_{\mathcal{G}}(\tau) \cap G_{1,2}]$. Let β be the number of involutions with the cycle structures