A characterization of A_{7} and M_{11}, III

Dedicated to Professor Kiiti Morita on his 60th birthday

By Hiroshi Kimura

1. Introduction

In this paper we shall prove the following theorem.
Theorem 1. Let G be a doubly transitive group on the set $\Omega=\{1,2$, $\cdots, n\}$. If the stabilizer $G_{1,2}$ of points 1 and 2 is isomorphic to the Janko's simple group $J(11)$ of order $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$ or a group $R(q)$ of Ree type, then G has a regular normal subgroup.

By Walter's theorem a simple group with abelian Sylow 2-subgroups is isomorphic to $J(11), R(q)(q \neq 3), P S L\left(2,2^{m}\right)$ or $P L S(2, q)$ with $q \equiv 3$ or $5(\bmod 8)$. Theorefore by Theorem 1 and theorems in [7] we have the following.

Theorem 2. Let G be a doubly transitive group on the set $\Omega=\{1,2, \cdots$, $n\}$. If $G_{1,2}$ is isomorphic to a simple group with abelian Sylow 2-subgroups, then G is isomorphic to the alternating group A_{7} of degree seven, the Mathieu group M_{11} of degree eleven or G has a regular normal subgroup.

Let X be a subset of a permutation group. Let $F(X)$ denote the set of all fixed points of X and $\alpha(X)$ be the number of points in $F(X) . \quad N_{G}(X)$ acts on $F(X)$.

Let $\chi_{1}(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively. The other notation is standard.

2. Preliminaries

Let G be a doubly transitive group on Ω not containing a regular normal subgroup such that $G_{1,2}$ is isomorphic to $J(11)$ or $R(q)$. Let K be a Sylow 2 -subgroup of $G_{1,2}$. Then K is an elementary abelian 2-group of order 8. Let I be an involution of G with the cycle structure (1,2) \cdots. Then I normalizes $G_{1,2}$. Since Aut $\left(G_{1,2}\right) / \operatorname{Inn}\left(G_{1,2}\right)$ is of odd order, we may assume I centralizes $G_{1,2}$. Let τ be an involution of K. Let τ fix i points of Ω, say $1,2, \cdots, i$. Since every involution of G is conjugate to an involution in $I G_{1,2}$, it is conjugate to I or $I \tau$.

Let d be the number of elements in $G_{1,2}$ inverted by I. Set $\gamma=\left[G_{1,2}\right.$: $\left.C_{G}(\tau) \cap G_{1,2}\right]$. Let β be the number of involutions with the cycle structures

