On the nilpotency index of the radical of a group algebra

By Kaoru Motose and Yasushi Ninomiya

Throughout the present note, K will represent an algebraically closed field of characteristic $p>0$. In case G is a p-solvable group of order $p^{a} m$ $(a \geqq 1, p \nmid m)$, concerning the nilpotency index $t(G)$ of the radical $J(K G)$ of the group algebra $K G$, D. S. Passman [4; Th. 1.6], Y. Tsushima [5; Th.2] and D. A. R. Wallace [7; Th. 3. 3] have obtained the following :

$$
p^{a} \geqq t(G) \geqq a(p-1)+1
$$

In $\S \S 1$ and 2 of the present note, we shall investigate when $t(G)=p^{a}$ or $t(G)=a(p-1)+1$, where G is a p-solvable group of order $p^{a} m(a \geqq 1$, $p \nmid m)$. Furthermore, as an application of Th. 1, we shall present a characterization of a finite group G with $t(G)=[J(K G): K]+1$ (Th. 2).

1. We shall begin our study with the following:

Theorem 1. If G is a p-group of order p^{a}, then there holds the following:
(1) $t(G)=a(p-1)+1$ if and only if G is elementary abelian.
(2) $t(G)=p^{a}$ if and only if G is cyclic.

Proof. (1) Following [3], we consider the \mathfrak{R}-series of G :

$$
G=\Re_{1} \supseteq \Re_{2} \supseteq \cdots \supseteq \Re_{t(G)}=1
$$

where $\Re_{2}=\left\{x \in G \mid 1-x \in J(K G)^{\lambda}\right\}$. Then, every \Re_{2} is a characteristic subgroup of G and $\Omega_{2} / \Omega_{2+1}$ is an elementary abelian group of order $p^{a_{2}}$. By [3; Th. 3.7], we have $t(G)=\sum_{z} \lambda d_{\lambda}(p-1)+1$. If $t(G)=a(p-1)+1$ then $\sum_{2} \lambda d_{\lambda}=a$. Combining this with $\sum_{2} d_{2}=a$, we readily obtain $d_{1}=a$ and $d_{\lambda}=0(\lambda \neq 1)$, namely, G is elementary abelian. The converse is obvious by [3; Th. 6.2].
(2) Suppose $t(G)=p^{a}$. If $\Phi(G)$ is the Frattini subgroup of G, then [7; Th. 2. 4] yields $|G|=t(G) \leqq t(\Phi(G)) \cdot t(G / \Phi(G)) \leqq|\Phi(G)| \cdot|G / \Phi(G)|=|G|$, whence it follows $t(G / \Phi(G))=|G / \Phi(G)|=p^{b}(b \leqq a)$. Since $G / \Phi(G)$ is elementary abelian, $t(G / \Phi(G))=b(p-1)+1$ by (1). Hence, $p^{b}=|G / \Phi(G)|=$ $t(G / \Phi(G))=b(p-1)+1$, which means $b=1$ and $G / \Phi(G)$ is cyclic. Now, as is well-known, G is cyclic. Concerning the converse, there is nothing to prove.

In what follows, G_{p} will represent a Sylow p-subgroup of G.

