On the nilpotency index of the radical of a group algebra

By Kaoru MOTOSE and Yasushi NINOMIYA

Throughout the present note, K will represent an algebraically closed field of characteristic p>0. In case G is a p-solvable group of order p^am $(a \ge 1, p \nmid m)$, concerning the nilpotency index t(G) of the radical J(KG) of the group algebra KG, D. S. Passman [4; Th. 1.6], Y. Tsushima [5; Th.2] and D. A. R. Wallace [7; Th. 3.3] have obtained the following:

$$p^a \geq t(G) \geq a(p-1)+1.$$

In §§1 and 2 of the present note, we shall investigate when $t(G) = p^a$ or t(G) = a(p-1)+1, where G is a p-solvable group of order $p^a m(a \ge 1, p \nmid m)$. Furthermore, as an application of Th. 1, we shall present a characterization of a finite group G with t(G) = [J(KG): K] + 1 (Th. 2).

1. We shall begin our study with the following :

THEOREM 1. If G is a p-group of order p^{*} , then there holds the following:

(1) t(G) = a(p-1)+1 if and only if G is elementary abelian.

(2) $t(G) = p^a$ if and only if G is cyclic.

PROOF. (1) Following [3], we consider the \Re -series of G:

$$G = \Re_1 \supseteq \Re_2 \supseteq \cdots \supseteq \Re_{\iota(G)} = 1,$$

where $\Re_{\lambda} = \{x \in G | 1 - x \in J(KG)^{\lambda}\}$. Then, every \Re_{λ} is a characteristic subgroup of G and $\Re_{\lambda}/\Re_{\lambda+1}$ is an elementary abelian group of order $p^{d_{\lambda}}$. By [3; Th. 3.7], we have $t(G) = \sum_{\lambda} \lambda d_{\lambda}(p-1)+1$. If t(G) = a(p-1)+1 then $\sum_{\lambda} \lambda d_{\lambda} = a$. Combining this with $\sum_{\lambda} d_{\lambda} = a$, we readily obtain $d_1 = a$ and $d_{\lambda} = 0(\lambda \neq 1)$, namely, G is elementary abelian. The converse is obvious by [3; Th. 6.2].

(2) Suppose $t(G) = p^a$. If $\Phi(G)$ is the Frattini subgroup of G, then [7; Th. 2.4] yields $|G| = t(G) \leq t(\Phi(G)) \cdot t(G/\Phi(G)) \leq |\Phi(G)| \cdot |G/\Phi(G)| = |G|$, whence it follows $t(G/\Phi(G)) = |G/\Phi(G)| = p^b(b \leq a)$. Since $G/\Phi(G)$ is elementary abelian, $t(G/\Phi(G)) = b(p-1) + 1$ by (1). Hence, $p^b = |G/\Phi(G)| = t(G/\Phi(G)) = b(p-1) + 1$, which means b = 1 and $G/\Phi(G)$ is cyclic. Now, as is well-known, G is cyclic. Concerning the converse, there is nothing to prove.

In what follows, G_p will represent a Sylow *p*-subgroup of G.