Notes on relatively harmonic immersions

A Same

.v.: 14

. .

By Shigeru Ishihara and Susumu Ishikawa

The notion of harmonic mappings was introduced and such mappings were studied by Eells and Sampson [1]. Recently, such mappings have been discussed by several authors (See [1], [2], [3], [4] and [5], for example) and many interesting results have been obtained. Yano and one of the present authors [5] have proved, concerning harmonic mappings, some theorems in which sufficient conditions for a harmonic mapping to be affine or homothetic are stated. To prove these theorems, they computed Laplacian $\Delta \|df\|^2$ of the square of the differential mapping df for a harmonic mapping f of a compact Riemannian space (M, g) into a Riemannian space (N, \bar{g}) and pinched in a certain sense the sum of eigenvalues of the tensor g^* induced in M from \bar{g} by f. In the present paper, we define relatively harmonic immersions of a compact Riemannian space (M, \bar{g}) of dimension *n* into a Riemannian space (N, \bar{g}) of dimension n+1 (See § 1) and obtain some sufficient conditions for such an immersion to be relatively affine or homothetic by a similar way to that taken in [5]. The results will be stated in Theorems $4.1 \sim 4.5$.

In §1, notations and some concepts concerning immersions and relatively harmonic immersions will be defined and some propositions will be proved. In §2 Laplacian $\Delta ||df||^2$ will be computed and in §3 some inequalities will be given for later use. The last §4 is devoted to prove Theorems $4.1 \sim 4.5$.

§1. Differentiable immersions of a Riemannian space into another

Let (M, g) and (N, \bar{g}) be two Riemannian spaces of dimension n and n+1 respectively, where $n \ge 2$. Let there be given a differentiable immersion $f: M \to N$, that is, a differentiable mapping $f: M \to N$ whose rank is equal to n everywhere. Such an immersion will be sometimes denoted by $f: (M, g) \to (N, \bar{g})$. Manifolds, mappings and geometric objects we discuss are assumed to be differentiable and of class C^{∞} . Take a coordinate neighborhoods $\{U, x^i\}$ of M and $\{\overline{U}, y^a\}$ of N in such a way that $f(U) \subset \overline{U}$, where local coordinates of M are denoted by $(x^{i})=(x^{1}, \cdots, x^{n})$ and those of N by $(y^{\alpha})=(y^{\overline{1}}, \cdots, y^{\overline{n+1}})$. The indices h, i, j, k, l, m, r, s run over the range $\{1, \cdots, n\}$ and the indices $\alpha, \beta, \tau, \delta, \lambda, \mu, \nu$ over the range $\{\overline{1}, \cdots, \overline{n+1}\}$.