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1. Introduction
, The index theorem for geodesies under the general boundary condition

(two variable end points) has been given by W. Ambrose ([1], see also T.
Takahashi [5] ). But his proof is very complicated. M. Klingmann ([4])
proved the somewhat more general index theorem using the theory of
quadratic forms on Hilbert space. Recently W. Klingenberg ([2], [3]) has
obtained d.\sim \mathfrak{k}he-index\dot{t}heo\tau em=\backslash for^{\sim} closed geodesies from the geodesic flow
view point. The purpose of the present note is to give another simple
proof of the Ambrgse index theorem via Klingenberg’s view point. In
fact, we need only the fundamental properties of Jacobi fields. Since the
concept of conjugate point defined in [1] is not so familiar, we shall give
the explicit statementarrow of the Ambrose index theorem for completeness.

Let (M, \langle, \rangle) be a riemannian manifold and K, L be submanifolds of
M. Let c:[a, b]arrow M be a normal geodesic such that c(a)\in K, c(b)\in L,\dot{c}(a)\perp

T_{c(a\rangle}K,\dot{c}(b)\perp T_{c(b)}L, where T_{c(a)}^{-}K etc. denotes the tangent space to K
at c(a). W_{(}e will be concerned with the “number of essentially different
curves connecting K and L which are shorter than c” First we shall
give some preliminaries.

1.1. Boundary conditions. A boundary condition at t(a\leqq t\leqq b) is,
by definition, a pa\dot{r}r \mathscr{S}=(S, A_{S}.) where S is a subspace of 1 \dot{c}(t) (the
orthogonal complement of \dot{c}(t) in T_{c(t)}M) and A_{S} : Sarrow S is a self-adjoint
linear mapping of S.

EXAMPLE 1. Let P be a submanifold of M which is perpendicular
to c at c(t). Then we have the boundary condition (S, A_{S}) at t by S:=
T_{c(t)}P, \langle A_{S}X, Y\rangle :=H_{\delta\langle t)}(X, Y), where H_{\delta(t)} denotes the second fundamental
form of P relative to the normal c\{t) .

Let f be a vector space of Jacobi fields along c which is perpen-
dicular to c. We shall denote the covariant differentiation with respect to
\dot{c}(t) by \nabla . If the boundary condition \mathscr{S} at t is given, we define

f_{A}^{*}\nabla: =\{Y\in ff’|Y(t)\in S,\cdot \nabla Y(t)-A_{S}Y(t)1S\} dim \mathscr{I}_{S}^{*}=\dim M–l3

f_{A\nabla}:=rightarrow. \{Y\in f[Y(t)\in Sr,-\nabla Y_{K}(\wedge t)_{\backslash }=A_{q_{-}},Y(At)\}\backslash dim f_{S}=\dim S\tau


