Some remarks on nonlinear differential equations in Banach spaces

By Shigeo KATO

§1. Introduction and results.

Let E be a Banach space with the dual space E^* . The norms in E and E^* are denoted by || ||. We denote by S(u, r) the closed sphere of center u with radius r.

In this paper we are concerned with nonlinear abstract Cauchy problems of the forms

$$(D_1) \qquad \frac{d}{dt} u(t) = f(t, u(t)), \qquad u(0) = u_0 \in E,$$

and

$$(D_2) \qquad \qquad \frac{d}{dt} u(t) = Au(t) + f(t, u(t)), \qquad u(0) = u_0 \in D(A).$$

Here A is a nonlinear operator with domain D(A) and range R(A) in E, and f is a E-valued mapping defined on $[0, T] \times S(u_0, r)$ or on $[0, \infty) \times E$.

It is well known that in the case of $E=R^n$, the *n*-dimensional Euclidean space, the continuity of f in a neighbourhood of $(0, u_0)$ alone implies the existence of a local solution of (D_1) . This is the classical Peano's theorem. However, this theorem cannot be generalized to the infinitedimensional case (see [3], [16]).

It is our object in this paper to give sufficient conditions for the existence of the unique solutions to the Cauchy problems of the forms (D_1) and (D_2) .

Let the functionals \langle , \rangle_1 and \langle , \rangle_2 be defined as follows (cf. M. Hasegawa [6]):

$$\langle u, v \rangle_1 = \lim_{h \downarrow 0} \frac{1}{h} (\|u+hv\|-\|u\|),$$

and

$$\langle u, v \rangle_2 = \frac{1}{2} (\langle u, v \rangle_1 - \langle u, -v \rangle_1)$$

for u, v in E.

In order to prove the existence of the unique solution of the equation