Analytic functions in a neighbourhood of irregular boundary points

By Zenjiro KURAMOCHI (Received April 30, 1975)

The present paper is a continuation of the previous paper with title "Analytic functions in a lacunary end of a Riemann surface"1. We use the same notions and terminologies in the previous one. Let G be an end of a Riemann surface $\in O_g$ (we denote by O_g the class of Riemann surfaces with null boundary) and G' = G - F be a lacunary end and let $p \in \mathcal{A}_1(M)$ be a minimal boundary point relative to Martin's topology M over G with irregularity $\delta(p) = \overline{\lim} G(z, p_0) > 0$, where $G(z, p_0) : p_0 \in G'$ is a Green's function of G'. Then Theorems 2, 3 and 4 in the previous show that analytic functions in G' of some classes have similar behaviour at p as p is an inner point of G'. We shall show these theorems are valid not only for the above domains but also for any Riemann surface $\notin O_{g}$. The extensions of Fatou and Beurling's theorems express the behaviour of analytic functions on almost all boundary points but have no effect on the small set, $\{p \in \mathcal{A}_1(M) : \delta(p) > \delta\}$. The purpose of this paper is to study analytic functions on the small set, to extend theorems in the previous one and to show some examples. Let G be a domain in a Riemann surface R. Through this paper we suppose ∂G consists of at most a countably infinite number of analytic curves clustering nowhere in R. The following lemma is useful.

LEMMA 5²). Let R be a Riemann surface $\in O_g$ and let G be a domain and $U_i(z)$ $(i=1, 2, \dots, i_0)$ be a harmonic function in G such that $D(U_i(z))$ $<\infty$. Then there exists a sequence of curves $\{\Gamma_n\}$ in R such that Γ_n separates a fixed point p_0 from the ideal boundary, $\Gamma_n \rightarrow ideal$ boundary of R and $\int_{\Gamma_n \cap G} \left| \frac{\partial}{\partial n} U_i(z) \right| ds \rightarrow 0$ as $n \rightarrow \infty$ for any i.

Generalized Gree's function²⁾ (abbreviated by G.G.). Let R be a Riemann surface with an exhaustion $\{R_n\}$ $(n=0, 1, 2, \cdots)$ and G be a domain in R. Let $w_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-(G\cap(R_{n+i}-R_n))$ such that $w_{n,n+i}(z)=0$ on $\partial R_{n+i}-G$ and =1 on $G\cap(R_{n+i}-R_n)$. We call $\lim_{n \to \infty} w_{n,n+i}(z)$ a H.M. (harmonic measure) of the boundary determined by G