Almost immersions

By Kazuaki KOBAYASHI (Received February 12, 1975)

1. We work in the category of compact PL spaces and PL maps [Z]. Given spaces X and Y and a map $f: X \rightarrow Y$, we define $U_r(f)$ to be the set of points $x \in X$ such that $f^{-1}f(x)$ contains at least r points. $S_r(f)$ is the closure of $U_r(f)$ in X. We call $B(f)=S_2(f)-U_2(f)$ branch locus of f (i. e. for $x \in B(f)$ $f^{-1}f(x)=x$ but f|U(x) is not embedding for any neighborhood U(x) of x.) Conversely we consider whether $f|U_2(f)$ is a local embedding (=immersion) or not (i. e. for $x \in U_2(f)$ there is a neighborhood U(x) of x such that f|U(x) is an embedding). For this problem we obtain a following.

PROPOSITION. 1. If M^m , Q^q are closed m- and q-dim. manifolds and if $f: M^m \rightarrow Q^q$ (m < q) is a map, $f|U_2(f)$ is an immersion.

Next we consider about almost immersions. Given a map $f: M \rightarrow Q$, we call f almost immersion if $B(f)=S_2(f)-U_2(f)=$ one point and we call f special almost immersion if f is an almost immersion and if $S_2(f|lk(a, M))=\{a_1, \dots, a_{2n}\}$ (finite set of even points) for a unique point $\{a\}=B(f)$ and $S_3(f|lk(a, M))=\phi$. According to Irwin [1] f is a simple immersion if $S_3(f)=\phi=B(f)$. Then we prove

THEOREM 1. Let M^m , Q^q be (2m-q-1)-connected closed manifolds, $3m \leq 2q-1$ and $q \geq 6$. Then any PL map $f: M \rightarrow Q$ is homotopic to a special almost immersion $g; M \rightarrow Q$ with $S_3(g) = \phi$.

THEOREM 2. Let M^m be (2m-q-1)-connected closed manifold and Q^q be (2m-q)-connected, $q \leq m-3$. Then any PL map f; $M \rightarrow Q$ is homotopic to an almost immersion $g: M \rightarrow Q$ with $S_3(g) = \phi$.

In this paper M, Q always mean m- and q-dim. closed manifold if otherwise is not stated. D^n , S^n are always n-dim. ball and sphere respectively. For a simplial complex K and a simplex Δ^t in K, let

$$\begin{split} St(\varDelta^t, K) &= \left\{ \varDelta^p \in K \left| \varDelta^p < \varDelta^q, \varDelta^q > \varDelta^t \right\}, \\ Lk(\varDelta^t, K) &= \left\{ \varDelta^p \in St(\varDelta^t, K) \left| \varDelta^p \cap \varDelta^t = \phi \right\} \right\} \end{split}$$
be

the star and the link of Δ^t in K. For spaces or complexes X and Y, X*Y denote a non-singular join of X with Y. We call X*Y a linear cone on Y if X is one point. ∂M , Int M mean the boundary, the interior of the