On projective *H*-separable extensions

By Kozo Sugano

(Received October 28, 1974)

Introduction

All notations and terminologies in this paper are same as those in the author's previous papers [7], [8], [9], [10] and [11]. All rings shall have identities, and all subrings of them shall have the same identities as them. Whenever we denote a ring and its subring by Λ and Γ , respectively, we shall always denote the center of Λ by C and the centralizers of Γ in Λ , i.e., $V_{\mathcal{A}}(\Gamma)$, by \mathcal{A} . A ring Λ is an H-separable extension of a subring Γ if $\Lambda \otimes_{\Gamma} \Lambda$ is Λ - Λ -isomorphic to a Λ - Λ -direct summand of a finite direct sum of copies of Λ . Some equivalent conditions and fundamental properties have been researched in [3], [4] and [7]. In case Γ is the center of Λ , this definition is same as that of Azumaya algebra, and we have found in H-separable extension many similar properties to Azumaya algebra. In §1 we shall study in what case an H-sparable extension Λ of Γ become Γ projective. If B is an intermediate subring of A and Γ such that ${}_{B}B_{\Gamma} < \oplus$ ${}_{B}\Lambda_{\Gamma}$ and B is left relatively separable over Γ in Λ , Λ is left B-projective. And if furthermore B is right relatively separable over Γ in A, A is a left QF-extension of B (Theorem 1.1). In \$2 we shall study some relations between H-separable extensions of simple rings and classical fundamental theorem on simple rings. The latter states that if Λ is a simple ring with its center C, and if D is a simple C-algeba $([D:C] < \infty)$ contained in A, then $\Gamma = V_A(D)$ is simple, $D = V_A(\Gamma)$, and some interesting commutor theorems hold in this case (see [2]). Now we shall prove that Λ is an Hseparable extension of Γ in this case (Theorem 2.1). We have already found that similar commutor theorems hold in general H-separable extensions (see Theorem 1 [6]). In §3 we shall study some properties of ideals in H-separable extensions. Especially, we will see in Theorem 3.2 that if Λ is an H-separable extension of Γ such that Λ is right Γ -projective and a right Γ -generator, there exists a 1–1 correspondence between the class of left ideals of Γ and the class of left ideals of Λ which are also right Δ -submodules.

The author gives his hearty thanks to Alexander von Humboldt-Stiftung in West Germany who gave him the financial support when he wrote this paper in Munich.