Characterization of the p-conformally flat Riemannian manifold

By Izumi HASEGAWA (Received May 14, 1975)

§1. Introduction.

Recently, Bang-yen Chen and Kentaro Yano [1] proved the following:

THEOREM 1. In order that a Riemannian manifold M of dimension n>3 is conformally flat, it is necessary and sufficient that there exists a (unique) quadratic form Q on M such that the sectional curvature $K(\sigma)$ with respect to a plane σ is the trace of the restriction of Q to σ , i.e. $K(\sigma)=trace Q/\sigma$, the metric being also restricted to σ .

The object of this paper is to give the generalization of this theorem, *ipso facto*, the characterization of higher order conformally flatness.

We have the following :

THEOREM 2. In order that a Riemannian manifold M of dimension $n \ge 4p$ is p-conformally flat, it is necessary and sufficient that there exists a (unique) quadratic form Q, which satisfies the generalized first Bianchi identity as double form of type (2p-1, 2p-1), on the bundle $\Lambda^{2p-1}(M)$ of (2p-1)-vectors of M such that the 2p-th sectional curvature $K_{2p}(\sigma)$ with respect to an 2p-plane σ is the trace of the restriction of Q to $\Lambda^{2p-1}(\sigma)$, i.e. $K_{2p}(\sigma) = \operatorname{trace} Q/\Lambda^{2p-1}(\sigma)$.

§2. Preliminaries.

Let M be an *n*-dimensional Riemannian manifold with the Riemannian metric g, let $\mathfrak{F}(M)$ be the algebra of functions on M and let $\mathfrak{X}(M)$ be the Lie algebra of vector fields on M. In what follows we write $g = \langle , \rangle$, where it is convenient.

For p an integer between 1 and n, let $\Lambda^{p}(M)$ denote the bundle of p-vectors of M and let $\Lambda^{p}(m)$ be the fiber over $m \in M$. $\Lambda^{p}(M)$ is a Riemannian vector bundle, with the inner product on the fiber $\Lambda^{p}(m)$ over m related to the inner product on the tangent space M_{m} of M at m by

(2.1) $\langle X_1 \wedge X_2 \wedge \cdots \wedge X_p, Y_1 \wedge Y_2 \wedge \cdots \wedge Y_p \rangle = \det [\langle X_i, Y_j \rangle], (X_i, Y_j \in M_m).$ We define a double form of type (p, q) on M to be an $\mathfrak{F}(M)$ -multilinear map