Note on simple ring extensions

By Sigurd Elliger and Hisao Tominaga

(Received August 10, 1975)

Throughout, A / B will represent a ring extension of Artinian simple rings (with 1), V the centralizer of B in A, and $A^{*}=\operatorname{Hom}\left({ }_{B} A,{ }_{B} B\right)$. In this note, we shall prove the following:

Theorem. Assume that $[A: B]_{l}<\infty$ and A is $B V-A$-irreducible and A - $B V$-irreducible. If $\operatorname{Hom}\left({ }_{A} A^{*}, A_{A} A_{B}\right) \neq 0$ then A / B is a Frobenius extension.

Proof. First, we claim that

$$
\begin{equation*}
\operatorname{Hom}\left({ }_{A} A_{A},{ }_{A} A \otimes_{B} A_{A}\right) \cong \operatorname{Hom}\left({ }_{A} A_{B}^{*},{ }_{A} A_{B}\right) \cong \operatorname{Hom}\left({ }_{A}\left(\operatorname{End}_{B} A\right)_{A},{ }_{A} A_{A}\right) \tag{1}
\end{equation*}
$$

In fact,

$$
{ }_{A} A \otimes_{B} A_{A} \cong{ }_{A} \operatorname{Hom}\left(B_{B}, A_{B}\right) \otimes_{B} A_{A} \cong{ }_{A} \operatorname{Hom}\left(A_{B}^{*}, A_{B}\right)_{A}
$$

and

$$
{ }_{A} A \otimes_{B} A_{A} \cong{ }_{A} \operatorname{Hom}\left(A_{A}, A_{A}\right) \otimes_{B} A_{A} \cong{ }_{A} \operatorname{Hom}\left(\left(\operatorname{End}_{B} A\right)_{A}, A_{A}\right)_{A}
$$

Hence, $\operatorname{Hom}\left({ }_{A} A_{A},{ }_{A} A \otimes_{B} A_{A}\right) \cong\left\{u \in A \otimes{ }_{B} A \mid a u=u a\right.$ for all $\left.a \in A\right\} \cong \operatorname{Hom}\left({ }_{A} A *_{B}\right.$, ${ }_{A} A_{B}$) resp. $\operatorname{Hom}\left({ }_{A}\left(\operatorname{End}_{B} A\right)_{A},{ }_{A} A_{A}\right)$.

To be easily seen, $A_{A} A_{B}$ and ${ }_{B} A_{A}$ are homogeneously completely reducible and their lengths coincide with the capacity of the simple ring $V^{1)}$. Then, from $\operatorname{Hom}\left({ }_{A} A_{B}{ }_{B},{ }_{A} A_{B}\right) \neq 0$ one will easily see that there exists an epimorphism $h:{ }_{A} A^{*}{ }_{B} \rightarrow_{A} A_{B}$. It follows then $[A: B]_{r}=\left[A^{*}: B\right]_{r} \geqq[A: B]_{r}$. In particular, there holds the symmetric statment of (1) and Hom ${ }_{B}$ (Hom $\left.\left.\left(A_{B}, B_{B}\right)\right)_{A},{ }_{B} A_{A}\right) \neq 0$, which enables us to obtain $[A: B]_{r} \geqq[A: B]_{l}$, namely, $[A: B]_{r}=[A: B]_{l}=\left[A^{*}: B\right]_{r}$. Therefore, h is an isomorphism and A / B is a Frobenius extension.

Corollary 1. Assume that $[A: B]_{l}<\infty$ and A is $B V$ - A-irreducible and A - $B V$-irreducible. If A / B is a separable extension then it is a Frobenius extension.

Proof. There exists an $e=\sum x_{i} \otimes y_{i} \in A \otimes{ }_{B} A$ such that $\sum x_{i} y_{i}=1$ and $a e=e a$ for all $a \in A$ (cf. for instance [1, p. 366]). Therefore, $\operatorname{Hom}\left({ }_{A} A^{*}{ }_{B}\right.$, $\left.{ }_{A} A_{B}\right) \cong \operatorname{Hom}\left({ }_{A} A_{A},{ }_{A} A \otimes{ }_{B} A\right) \neq 0$ by (1) and A / B is a Frobenius extension.

Finally, if End ${ }_{B} A$ possesses a right free A-basis $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ such that

[^0]
[^0]: 1) See [3, Proposition 5.4].
