U-rational extension of a ring

By Kenji NISHIDA

(Received June 26, 1975)

Introduction.

Let R be a ring with identity and U be a right R-module such that $R \subset II E(U) = C$ where E(U) is the injective hull of U. Then the double centralizer of C is a ring S and is a U-rational extension of R as a right R-module. A ring S is regarded as a subring of a maximal right quotient ring of R.

In [5], K. Masaike states a characterization of a ring of which a canonical inclusion of R into a maximal quotient ring is a right flat epimorphism. We will generalize this result for a canonical inclusion of R into S.

Throughout this paper, a ring R has always an identity element and an R-module is unital. An injective hull of an R-module M is written by E(M). Let X and Y be the right R-modules. We say X is Y-torsionless if X is embeddable into some product of Y, i.e., $X \subset HY$. This is equivalent that for any nonzero $x \in X$ there exists an R-homomorphism f of X into Y such that $f(x) \neq 0$.

1. U-rational extension of a ring

Let U be a right R-module such that E(U) is faithful. Then we have $R \subset \Pi E(U)$. We put $C = \Pi E(U)$, $H = \operatorname{Hom}_{R}(C, C)$. Then C becomes a bimodule ${}_{H}C_{R}$, thus we get $S = \operatorname{Hom}_{H}(C, C)$ the double centralizer of C_{R} .

PROPOSITION 1. C is injective as a right S-module, $\operatorname{Hom}_R(C,C) = \operatorname{Hom}_S(C,C)$, and if B_R is a direct summand of C_R , then B is a right S-module and also a direct summand of C as a right S-module.

PROOF. This is well-known (see [3], [4] for example), but for the completeness, we state the proof.

Let $0 \to X \to Y$ be an exact sequence of right S-modules, and f be an S-homomorphism of X into C. Since C_R is injective, f can be extended to $g: Y_R \to C_R$. We will show that g is an S-homomorphism.

For any $y \in Y$, define the mapping $k_y : S \to C$ by $k_y(s) = g(ys) - g(y)s$ for $s \in S$. This is clearly an R-homomorphism and can be extended to $k'_y \in H$ by injectivity of C_R . Then $k'_y(R) = k_y(R) = 0$, therefore, $k_y(s) = k'_y(s) = k'_y(1)s$ = $(k'_y(1))s = 0$ (here we use the canonical embedding of S_R into C_R ; $s \mapsto (1)s$).