\boldsymbol{U}-rational extension of a ring

By Kenji Nishida

(Received June 26, 1975)

Introduction.

Let R be a ring with identity and U be a right R-module such that $R \subset \Pi E(U)=C$ where $E(U)$ is the injective hull of U. Then the double centralizer of C is a ring S and is a U-rational extension of R as a right R-module. A ring S is regarded as a subring of a maximal right quotient ring of R.

In [5], K. Masaike states a characterization of a ring of which a canonical inclusion of R into a maximal quotient ring is a right flat epimorphism. We will generalize this result for a canonical inclusion of R into S.

Throughout this paper, a ring R has always an identity element and an R-module is unital. An injective hull of an R-module M is written by $E(M)$. Let X and Y be the right R-modules. We say X is Y-torsionless if X is embeddable into some product of Y, i.e., $X \subset \Pi Y$. This is equivalent that for any nonzero $x \in X$ there exists an R-homomorphism f of X into Y such that $f(x) \neq 0$.

1. U-rational extension of a ring

Let U be a right R-module such that $E(U)$ is faithful. Then we have $R \subset \Pi E(U)$. We put $C=\Pi E(U), H=\operatorname{Hom}_{R}(C, C)$. Then C becomes a bimodule ${ }_{H} C_{R}$, thus we get $S=\operatorname{Hom}_{H}(C, C)$ the double centralizer of C_{R}.

Proposition 1. C is injective as a right S-module, $\operatorname{Hom}_{R}(C, C)=$ $\operatorname{Hom}_{S}(C, C)$, and if B_{R} is a direct summand of C_{R}, then B is a right S module and also a direct summand of C as a right S-module.

Proof. This is well-known (see [3], [4] for example), but for the completeness, we state the proof.

Let $0 \rightarrow X \rightarrow Y$ be an exact sequence of right S-modules, and f be an S-homomorphism of X into C. Since C_{R} is injective, f can be extended to $g: Y_{R} \rightarrow C_{R}$. We will show that g is an S-homomorphism.

For any $y \in Y$, define the mapping $k_{y}: S \rightarrow C$ by $k_{y}(s)=g(y s)-g(y) s$ for $s \in S$. This is clearly an R-homomorphism and can be extended to $k_{y}^{\prime} \in H$ by injectivity of C_{R}. Then $k_{y}^{\prime}(R)=k_{y}(R)=0$, therefore, $k_{y}(s)=k_{y}^{\prime}(s)=k_{y}^{\prime}((1) s)$ $=\left(k_{y}^{\prime}(1)\right) s=0$ (here we use the canonical embedding of S_{R} into $\left.C_{R} ; s \mapsto(1) s\right)$.

