Invariant hypersurfaces of $S^n \times S^n$ with constant mean curvature

Yoshio MATSUYAMA (Received May 14, 1975)

0. Introduction

Ludden and Okumura [1] studied minimal hypersurfaces of the product $S^n \times S^n$ of two *n*-spheres. Some of their results are as follows: a. If a compact orientable minimal hypersurface M of $S^n \times S^n$ (n>1) sat-

$$\int_{M} (S^{2} - (n-1)S) dM \ge \int_{M} ||\nabla H||^{2} dM$$

(in particular, $\nabla H=0$ and $S \ge n-1$), then the tangent space of M is invariant under an almost product structure on $S^n \times S^n$ (for simplicity, we say that M is an invariant hypersurface), where S= trace H^2 .

b. Let M be a compact orientable invariant minimal hypersurface of $S^n \times S^n$. Then either M is the totally geodesic hypersurface or $S \equiv n-1$, or S(x) > n-1 at some $x \in M$.

c. $S^{n-1}(1) \times S^n(1)$ and

isfies

$$S^{\scriptscriptstyle m}\left(\sqrt{m/\!(n\!-\!1)}\right)\times S^{\scriptscriptstyle n-m-1}\!(\sqrt{(n\!-\!m\!-\!1)/\!(n\!-\!1)})\times S^{\scriptscriptstyle n}\left(1\right)$$

are the only compact orientable invariant minimal hypersurfaces of $S^n \times S^n$ satisfying $S \leq n-1$.

In the present paper, we further investigate hypersurfaces of $S^n \times S^n$ under the assumption of non-negative sectional curvature.

That is, we obtain the following results:

A. A compact orientable minimal hypersurface with non-negative sectional curvature of $S^n \times S^n$ (n>1) which satisfies

$$\int_{M} (S^{2} - (n-1) S) dM \ge 0$$

(in particular, $S \ge n-1$) is an invariant hypersurface (Theorem 1.2 and Corollary 1.3).

B. Let M be a compact orientable invariant minimal hypersurface with non-negative sectional curvature of $S^n \times S^n$. Then either M is the totally geodesic hypersurface or $S \equiv n-1$ (Theorem 2.1).