A generalization of Whitney Lemma

By Kazuaki KOBAYASHI

(Received June 5, 1975)

§0. In this paper we study the elimination of the intersections of manifolds which is a generalization of WHITNEY LEMMA as follows.

WHITNEY LEMMA (simply connected version) (see [R & S]): Let P^p , Q^q be a pair of connected compact locally flat submanifolds of M^m which are transverse, so that p + q = m. Suppose (1) $p \ge 3$, $q \ge 3$ and $\pi_1(M) = 0$ or (2) $p \ge 2$, $q \ge 3$ and $\pi_1(M-Q) = 0$. If the intersection number of P and Q, $\varepsilon(P, Q)$, is zero, we can ambient isotope P off Q, by an isotopy which has compact support.

We work in the PL category ([Z]) throughout the paper.

MAIN RESULT I (BOUNDED VERSION) (COROLLARY TO THEOREM 1). Let P be a compact p-manifold and M be an m-manifold. Let Q be a compact q-dim. submanifold of M and $f: P \rightarrow \text{Int } M$ be an embedding, so that p+q=m+k. If (1) $\partial P \neq \phi$, P is k-connected, $k \leq p-3$ and $f(P) \cap Q \subset f(\text{Int } P)$ or (2) $\partial Q \neq \phi$, Q is k-connected, $k \leq q-3$ and $f(P) \cap Q \subset \text{Int } Q$, then there is an embedding $g: P \rightarrow \text{Int } M$ which is ambient isotopic to f and $g(P) \cap Q = \phi$.

MAIN RESULT II (CLOSED VERSION) (THEOREM 2.) Let P, M be a connected closed p- and m-manifolds and Q be a connected closed q-submanifold of M. Let $f: P \rightarrow M$ be an embedding and let p + q = m + k. Put $N = f(P) \cap Q$.

(1) If P, Q are k-connected and M is (k+1)-connected and if $k+3 \leq p$, $k+3 \leq q$ then P-side and Q-side intersection classes $\varepsilon_P(N)$ and $\varepsilon_Q(N)$ are defined (§2 for definition).

(2) Suppose $p, q \leq m-3$ and $\varepsilon_P(N)=0$ or $\varepsilon_Q(N)=0$ provided $\min(p,q) \geq 2k+3$ or $\varepsilon_i(N)=0$ provided $\max(p,q)\geq 2k+3$ where i=Q if $\max(p,q)=p$ and i=P if $\max(p,q)=q$. Then there is an embedding $g:P \rightarrow M$ so that g is ambient isotopic to f and $g(P) \cap Q = \phi$.

(3) If P, Q are (k+1)-connected and M is (k+2)-connected and if $k+4 \leq p$, $k+4 \leq q$, $\varepsilon_P(N)$ and $\varepsilon_Q(N)$ are uniquely determined for N (i.e. they do not depend on the choice of K, L and J at the definition of $\varepsilon_P(N)$, $\varepsilon_Q(N)$).