A generalization of Whitney Lemma

By Kazuaki Kobayashi

(Received June 5, 1975)
§0. In this paper we study the elimination of the intersections of manifolds which is a generalization of Whitney Lemma as follows.

Whitney Lemma (simply connected version) (see $[R \& S]):$ Let P^{p}, Q^{a} be a pair of connected compact locally flat submanifolds of M^{m} which are transverse, so that $p+q=m$. Suppose (1) $p \geqq 3, q \geqq 3$ and $\pi_{1}(M)=0$ or (2) $p \geqq 2, q \geqq 3$ and $\pi_{1}(M-Q)=0$. If the intersection number of P and Q, $\varepsilon(P, Q)$, is zero, we can ambient isotope P off Q, by an isotopy which has compact support.

We work in the $P L$ category ($[Z]$) throughout the paper.
Main Result I (Bounded version) (Corollary to Theorem 1). Let P be a compact p-manifold and M be an m-manifold. Let Q be a compact q-dim. submanifold of M and $f: P \rightarrow \operatorname{Int} M$ be an embedding, so that $p+q=m+k$. If (1) $\partial P \neq \phi, P$ is k-connected, $k \leqq p-3$ and $f(P) \cap Q$ $\subset f(\operatorname{Int} P)$ or $(2) \partial Q \neq \phi, Q$ is k-connected, $k \leqq q-3$ and $f(P) \cap Q \subset \operatorname{Int} Q$, then there is an embedding $g: P \rightarrow \operatorname{Int} M$ which is ambient isotopic to f and $g(P) \cap Q=\phi$.

Main Result II (Closed version) (Theorem 2.) Let P, M be a connected closed p - and m-manifolds and Q be a connected closed q-submanifold of M. Let $f: P \rightarrow M$ be an embedding and let $p+q=m+k$. Put $N=f(P) \cap Q$.
(1) If P, Q are k-connected and M is $(k+1)$-connected and if $k+3 \leqq p$, $k+3 \leqq q$ then P-side and Q-side intersection classes $\varepsilon_{P}(N)$ and $\varepsilon_{Q}(N)$ are defined ($\$ 2$ for definition).
(2) Suppose $p, q \leqq m-3$ and $\varepsilon_{P}(N)=0$ or $\varepsilon_{Q}(N)=0$ provided $\min (p, q)$ $\geqq 2 k+3$ or $\varepsilon_{i}(N)=0$ provided $\max (p, q) \geqq 2 k+3$ where $i=Q$ if $\max (p, q)=p$ and $i=P$ if $\max (p, q)=q$. Then there is an embedding $g: P \rightarrow M$ so that g is ambient isotopic to f and $g(P) \cap Q=\phi$.
(3) If P, Q are $(k+1)$-connected and M is $(k+2)$-connected and if $k+4 \leqq p, k+4 \leqq q, \varepsilon_{P}(N)$ and $\varepsilon_{Q}(N)$ are uniquely determined for N (i.e. they do not depend on the choice of K, L and J at the definition of $\varepsilon_{P}(N)$, $\varepsilon_{Q}(N)$).

