Remarks on L^2 -well posedness of mixed problems for hyperbolic systems

By Kôji Kubota

(Received May 24, 1976)

§1. Introduction and main theorem

In the present paper we are concerned with the boundary value problem for a $2m \times 2m$ strictly x_0 -hyperbolic system P of order one:

$$(P, B) \begin{cases} P(x, D) \ u = f & \text{in } \mathcal{Q}, \\ B(x') \ u = g & \text{on } \Gamma, \end{cases}$$

where Ω is the open half space $\{x=(x', x_n)=(x_0, x'', x_n); x_0 \in \mathbb{R}^1, x'' \in \mathbb{R}^{n-1}, x_n > 0\}$ $(n \ge 2)$, its boundary Γ is noncharacteristic for P and B(x') is an $m \times 2m$ matrix of rank m for every $x' \in \Gamma$. All coefficients of differential operators considered here are assumed to be smooth in $\overline{\Omega}$ and constant outside of a compact subset of $\overline{\Omega}$. Then the problem (P, B) is said to be L^2 -well posed if and only if there exist positive constants γ_0 and C such that for every $\gamma \ge \gamma_0$, $f \in H_{1,r}(\Omega)$ and $g \in H_{3/2,r}(\Gamma)$ (P, B) has a unique solution u in $H_{1,r}(\Omega)$ satisfying

(1.1)
$$\gamma^2 \|u\|_{0,r}^2 \leq C \left(\|f\|_{0,r}^2 + \|g\|_{1/2,r}^2 \right).$$

This definition of L^2 -well posedness is weaker than that in Kreiss [7], but it implies a certain well posedness of the corresponding mixed problem with initial data on $x_0=0$. (See §5 in Kubota [8]).

In a recent paper Sato and Shirota [15] have refined the results at §7 in Ohkubo and Shirota [11] who investigated the above problem under the condition that all of constant coefficients problems frozen the coefficients at Γ are L^2 -well posed. In this paper we try to complete some of the results at §§5, 6 and 8 in [11]. Here we shall use the same terminologies as in [11] unless otherwise indicated, but we denote by $\sqrt{\zeta}$ the branch of square roots of ζ such that $\sqrt{1} = 1$ (see [15]).

Throughout the present article we assume the following conditions (i) and (ii):

CONDITION (i) (with respect to the principal part P^0 of P). Let (η, σ, λ) be the covector of (x^0, x'', x_n) . Then for every $(x, \eta, \sigma) \in \Gamma \times (\mathbb{R}^n \setminus 0)$ the