Remarks on L^{2}-well posedness of mixed problems for hyperbolic systems

By Kôji Kubota

(Received May 24, 1976)

§ 1. Introduction and main theorem

In the present paper we are concerned with the boundary value problem for a $2 m \times 2 m$ strictly x_{0}-hyperbolic system P of order one:

$$
(P, B)\left\{\begin{array}{l}
P(x, D) u=f \text { in } \Omega \\
B\left(x^{\prime}\right) u=g \quad \text { on } \Gamma
\end{array}\right.
$$

where Ω is the open half space $\left\{x=\left(x^{\prime}, x_{n}\right)=\left(x_{0}, x^{\prime \prime}, x_{n}\right) ; x_{0} \in R^{1}, x^{\prime \prime} \in R^{n-1}\right.$, $\left.x_{n}>0\right\} \quad(n \geqq 2)$, its boundary Γ is noncharacteristic for P and $B\left(x^{\prime}\right)$ is an $m \times 2 m$ matrix of rank m for every $x^{\prime} \in \Gamma$. All coefficients of differential operators considered here are assumed to be smooth in $\bar{\Omega}$ and constant outside of a compact subset of $\bar{\Omega}$. Then the problem (P, B) is said to be L^{2}-well posed if and only if there exist positive constants γ_{0} and C such that for every $\gamma \geqq \gamma_{0}, f \in H_{1, r}(\Omega)$ and $g \in H_{3 / 2, \gamma}(\Gamma)(P, B)$ has a unique solution u in $H_{1, r}(\Omega)$ satisfying

$$
\begin{equation*}
\gamma^{2}\|u\|_{0, r}^{2} \leqq C\left(\|f\|_{0, r}^{2}+|g|_{1 / 2, r}^{2}\right) \tag{1.1}
\end{equation*}
$$

This definition of L^{2}-well posedness is weaker than that in Kreiss [7], but it implies a certain well posedness of the corresponding mixed problem with initial data on $x_{0}=0$. (See $\S 5$ in Kubota [8]).

In a recent paper Sato and Shirota [15] have refined the results at $\S 7$ in Ohkubo and Shirota [11] who investigated the above problem under the zondition that all of constant coefficients problems frozen the coefficients at Γ are L^{2}-well posed. In this paper we try to complete some of the results at $\S \S 5,6$ and 8 in [11]. Here we shall use the same terminologies as in [11] unless otherwise indicated, but we denote by $\sqrt{\zeta}$ the branch of square roots of ζ such that $\sqrt{1}=1$ (see [15]).

Throughout the present article we assume the following conditions (i) and (ii):

Condition (i) (with respect to the principal part P^{0} of P). Let (η, $\sigma, \lambda)$ be the covector of $\left(x^{0}, x^{\prime \prime}, x_{n}\right)$. Then for every $(x, \eta, \sigma) \in \Gamma \times\left(R^{n} \backslash 0\right)$ the

