A remark on the index of G-manifolds in the representation theory

By Yoshinobu KAMISHIMA

(Received May 15, 1976)

1. Introduction

Fix a finite group G. Let \mathscr{F} be a family of subgroups of G which satisfies if $H \in \mathscr{F}$ and $H' \subset H$, then $H' \in \mathscr{F}$. Then G-bordism group of G-manifolds is denoted by $\Omega_*(G, \mathscr{F})$. And its elements are the bordism classes [G, M] where M is a differentiable closed manifold and all isotropy groups G_x are in \mathscr{F} . Now we consider the index of G-manifolds. It is well known that the index I is a bordism invariant of Ω_{4k} . And it is extended naturally to the G-bordism invariant: $I: \Omega_{4k}(G, \mathscr{F}) \longrightarrow RO(G)$, where RO(G) is the Grothendieck group of G over R.

In this paper we compute the index of G-manifolds with $\mathscr{F} = \{1\}$ in RO(G) in the sense of R. Lee [5].

2. The homomorphism $I: \mathcal{Q}_{4k}(G, \mathscr{K}) \longrightarrow RO(G)$

Let M be a compact oriented differentiable G-manifold without boundary and \mathscr{F} -free. The bilinear form $\Phi: H^{2k}(M; R) \times H^{2k}(M; R) \longrightarrow R$ is defined by $\Phi(x, y) = \langle x \cup y, [M] \rangle$, where [M] is the orientation class of M. Then by the Poincaré duality, Φ is non-singular, symmetric and G-invariant. In $H^{2k}(M; R)$, we set G-invariant maximal subspaces

$$V_{+} = \left\{ x \in H^{2k}(M; R) \middle| \varPhi(x, x) > 0 \text{ if } x \neq 0 \right\}$$
$$V_{-} = \left\{ x \in H^{2k}(M; R) \middle| \varPhi(x, x) > 0 \text{ if } x \neq 0 \right\}, \text{ then}$$

 $I: \Omega_{4k}(G, \mathscr{F}) \longrightarrow RO(G)$ is defined by $I[G, M] = [V_+] - [V_-]$ (see [4] pp. 578), where $[V_{\pm}]$ is the equivalence class of V_{\pm} in RO(G). Now by the well known result (see [4] pp. 85-86), it is proved that

(2.1) The correspondence $I: \Omega_{4k}(G, \mathscr{F}) \longrightarrow RO(G)$ is the well-defined homomorphism.

In particular, $G = \{1\}$, since $\Omega_{4k}(G, \mathscr{Z}) = \Omega_{4k}$ and RO(G) = Z[K], where K is a trivial representation, $I: \Omega_{4k} \longrightarrow RO(G)$ is I[M] = I(M)[K], where I(M) is the index of M.