On a theorem of S. Chowla

By Tadashige Okada

(Received May 4, 1976)

Let p be an odd prime. Then S. Chowla [3] proved the following theorem.

Theorem. The $\frac{p-1}{2}$ real numbers $\cot (2 \pi a / p), a=1,2, \cdots, \frac{p-1}{2}$ are linearly independent over the field \boldsymbol{Q} of rational numbers.

Other proofs were given by Hasse [4], Iwasawa [5] and by Ayoub [1], [2].

In this note, we shall show the following theorem, which is a generalization of the above theorem, by means of improving the method of Chowla's proof.

Theorem. Let n be an integer with $n>2$ and let T be a set of representatives $\bmod n$ such that the union $\{T,-T\}$ is a complete set of residues prime to n. Then the $\phi(n) / 2$ real numbers $\cot (\pi a / n), a \in T$ are linearly independent over \boldsymbol{Q}, where $\phi(n)$ is the Euler totient function.

Proof. Let D be the set of all Dirichlet characters to the modulus n. For a map

$$
F:(\boldsymbol{Z} / n \boldsymbol{Z})^{\times} \longrightarrow \boldsymbol{C}
$$

from the multiplicative group $(\boldsymbol{Z} \mid n \boldsymbol{Z})^{\times}$of the residue class ring $\boldsymbol{Z} / n \boldsymbol{Z}$ to the complex field \boldsymbol{C}, we define the Fourier transform by

$$
\hat{F}(\chi)=\frac{1}{\phi(n)} \sum_{\substack{a(m o n) n \\(a, n)=1}} F(a) \bar{\chi}(a) \quad(\chi \in D) .
$$

Then the inversion formula

$$
F(a)=\sum_{x \in D} \hat{F}(\chi) \chi(a) \quad(a \in Z,(a, n)=1)
$$

holds.
We define

$$
H(a)=-\frac{1}{n} \sum_{x=1}^{n-1} e^{-2 \pi i a x / n} \log \left(1-e^{2 \pi i x / n}\right) \quad(a \in Z) .
$$

The formulas (6) and (16) in Lehmer [7] yield

$$
\hat{H}\left(x_{0}\right)=\frac{1}{n} \sum_{p \mid n} \frac{\log p}{p-1},
$$

