A certain congruence theorem for closed submanifolds of codimension 2 in a space of constant curvature

(The continuation of the previous paper $[1]^{1}$)

Dedicated to Professor Tominosuke Otuki on his 60th birthday

By Yoshie KATSURADA (Received April 23, 1976)

Introduction.

We consider an (m+2)-dimensional orientable Riemannian space S^{m+2} with constant curvature of class $C^{\nu}(\nu \geq 3)$ which admits a continuous differentiable one-parameter group G of 1-1 mappings T_{τ} of S^{m+2} onto itself (the group parameter τ , $-\infty < \tau < +\infty$, is assumed to be always canonic i.e., $T_{\tau_1} \cdot T_{\tau_2} = T_{\tau_1 + \tau_2}$). We assume that the orbits (or streamlines) of the points of S^{m+2} produced by T_{τ} are regular curves covering S^{m+2} simply.

The purpose of the present paper is to generalize the following theorem given by H. Hopf and the present author [2] for two orientable closed submanifolds of codimension 2.

THEOREM. Let W^{m+1} and \overline{W}^{m+1} be two orientable closed hypersurfaces in S^{m+2} and p and \overline{p} be the corresponding points of these hypersurfaces along an orbit, and $H_r(p)$ and $\overline{H}_r(p)$ be the r-th mean curvature at these points respectively. Assume that the set of points in which the orbit is tangent to W^{m+1} or \overline{W}^{m+1} has no inner point and that the second fundamental form of $W^{m+1}(t) \stackrel{\text{def}}{=} (1-t) W^{m+1} + t \overline{W}^{m+1}$, $0 \leq t \leq 1$ is positive definite. If G is a group of isometries of S^{m+2} and if the relation $H_r(p) = \overline{H}_r(p)$ holds for each point $p \in W^{m+1}$, then W^{m+1} and \overline{W}^{m+1} are congruent mod G.

Especially, in case of r=m, that is, the generalized theorem relating to the Gauss curvature was already proved in the previous paper [1].

§1. Generalized theorem.

We suppose an (m+2)-dimensional orientable Riemannian space S^{m+2} with constant curvature of class $C^{\nu}(\nu \geq 3)$ which admits an infinitesimal isometric transformation

(1.1)
$$\hat{x}^i = x^i + \xi^i(x) \,\delta\tau$$

¹⁾ Numbers in brackets refer to the references at the end of the paper.