A certain congruence theorem for closed submanifolds of codimension 2 in a space of constant curvature

 (The continuation of the previous paper [1] ${ }^{1)}$)Dedicated to Professor Tominosuke Ōtuki on his 60th birthday

By Yoshie Katsurada

(Received April 23, 1976)

Introduction.

We consider an ($m+2$)-dimensional orientable Riemannian space S^{m+2} with constant curvature of class $C^{\nu}(\nu \geqq 3)$ which admits a continuous differentiable one-parameter group G of $1-1$ mappings T_{τ} of S^{m+2} onto itself (the group parameter $\tau,-\infty<\tau<+\infty$, is assumed to be always canonic i.e., $T_{\tau_{1}} \cdot T_{\tau_{2}}=T_{\tau_{1}+\tau_{2}}$). We assume that the orbits (or streamlines) of the points of S^{m+2} produced by T_{τ} are regular curves covering S^{n+2} simply.

The purpose of the present paper is to generalize the following theorem given by H. Hopf and the present author [2] for two orientable closed submanifolds of codimension 2.

THEOREM. Let W^{m+1} and \bar{W}^{m+1} be two orientable closed hypersurfaces in S^{m+2} and p and \bar{p} be the corresponding points of these hypersurfaces along an orbit, and $H_{r}(p)$ and $\bar{H}_{r}(p)$ be the r-th mean curvature at these points respectively. Assume that the set of points in which the orbit is tangent to W^{m+1} or \bar{W}^{m+1} has no inner point and that the second fundamental form of $W^{m+1}(t) \stackrel{\text { def }}{=}(1-t) W^{m+1}+t \bar{W}^{m+1}, 0 \leqq t \leqq 1$ is positive definite. If G is a group of isometries of S^{m+2} and if the relation $H_{r}(p)=\bar{H}_{r}(p)$ holds for each point $p \in W^{m+1}$, then W^{n+1} and \bar{W}^{m+1} are congruent mod G.

Especially, in case of $r=m$, that is, the generalized theorem relating to the Gauss curvature was already proved in the previous paper [1].

§ 1. Generalized theorem.

We suppose an ($m+2$)-dimensional orientable Riemannian space S^{m+2} with constant curvature of class $C^{\nu}(\nu \geqq 3)$ which admits an infinitesimal isometric transformation

$$
\begin{equation*}
\hat{x}^{i}=x^{i}+\xi^{i}(x) \delta \tau \tag{1.1}
\end{equation*}
$$

1) Numbers in brackets refer to the references at the end of the paper.
